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Abstract
Dynamical anomalies are often observed near both the continuous andfirst-order phase transition
points.We propose that the universal anomalies could originate from the geometric phase effects. A
Pancharatnam-Berry phase is accumulated continuously in quantum states with the variation of
tuning parameters. Phase transitions are supposed to induce an abrupt shift of the geometric phase. In
ourmulti-level quantummodel, the quantum interference induced by the geometric phase could
prolong or shorten the relaxation times of excited states at phase transition points, which agrees with
the experiments,models under sudden quenches and our semi-classicalmodel. Furthermore, wefind
that by setting a phase shift ofπ, the excited state could be decoupled from the ground state by
quantumcancellation so that the relaxation time even could diverge to infinity. Ourwork introduces
the geometric phase to the study of conventional phase transitions aswell as quantumphase transition,
and could substantially extend the dephasing time of qubits for quantum computing.

1. Introduction

Phase transitions are of crucial importance in physics since a variety of static and dynamic properties of systems
are changed [1–5]. In a long history, the study of phase transition focuses on the static thermodynamic
properties in equilibrium states. Recently, it was shown that dynamicalmeasurements could provide a direct
insight into the investigation of the complex transitions [6–15]. Remarkably, the slowing-down dynamics near
the phase transition point have been observed in solids [9, 15–17], glasses [18] and evenmicrobial systems [19].
In the symmetry-breaking phase transition, the critical slowing down under perturbation could clearly be
observed in both experiments and theoreticalmodels at critical points [16, 20–23]. The divergence of the
relaxation time is attributed to the divergent correlation length according to the renormalization group theory
[24]. However, near the first-order phase transition, the ultrafast relaxation time from the photoexcited state to
the equilibrium state also increases by orders ofmagnitude in charge-ordered LaSrFeO [9]. Similarly, slowing-
downdynamics were observed near thefirst-orderMott transition and structural phase transition [15, 17].More
surprisingly, in the superconducting and antiferromagnetic phase transitions, the lifetimes of the decay are even
shortened at the critical point [12, 14]. Furthermore, in some 1D short-range spinmodels under sudden
quenches, the fastest relaxations are unexpectedly found at the critical points, in contrast to the critical slowing
down [5, 25–27]. Therefore, the dynamical anomalies near phase transition points are expected to be universal
phenomena in a vast number of systems.

In this paper, we propose that the universal anomalies of dynamics near phase transition points could
originate from the effect of the geometric phase. Date back to 1956, Pancharatnamproposed that the relative
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phase between two polarized light beams determines the intensity of the interferogram [28]. Later in 1984, Berry
realized that besides the dynamical phase, the quantum state acquires a geometric phase in the adiabatic and
cyclic evolution of the time-dependentHamiltonian [29]. The geometric phase is then generalized by loosening
the constraint of adiabaticity, cyclicity and unity [30, 31], and applied inmany fields ranging fromhigh-energy
physics [32] to condensedmatter [33], statistics [34, 35], molecular [36, 37], ultracold atoms [38], optics [39, 40]
and quantum computation [41].

The quantum criticality have been investigated based on the geometric phase of ground states in the XY Spin
model [42, 43], the ground state overlap inDickemode [44], the ground-state energy and its derivative in Rabi
model [45]. However, inmany-body systems, it is difficult or impossible to experimentallymeasure the ground
state energy and the functional dependency of the geometric phase on parameters. Theoretically, the system
Hamiltonian often could not be identified for a long time as in cuprates, iron pnictides,manganites and so on. In
this paper, we prove the dynamical anomalies at phase transition points are universal as the result of quantum
coherence, without the need for the exact systemHamiltonian or the precise dependency of the geometric
phases on control parameters. Ourmodel only includes some relevant quantum states of systems and coupling
interactions. The information of the energy gaps between the states and the coupling constants could be
measured via experiments. Therefore, themulti-levelmodel is not limited to a special system.We suppose that
Pancharatnam-Berry phases appear in quantum states and change continuously with tunable parameters such
as externalfields in theHamiltonians. In particular, such phases abruptly change at phase transition points.
Using the dissipative Schrödinger equation, we study the geometric phase effects on the dynamical evolution of a
multi-level systemnear the phase transition point based on the generalized spin-bosonmodel. Near the phase
transition points, the relative phase between the states belonging to neighboring phases induces quantum
interference, which results in the universal anomalies of the dynamics. The dynamical anomalies could be
applied to probe the phase transition in experiments.We also use a semi-classicalmodel to corroborate the
geometric phase effects on the relaxation of the excited states. The relaxation time at phase transition points
could become longer or shorter, which is in agreement with the experiments. Furthermore, we show that the
relaxation time even could go to infinity by setting some peculiar coupling parameters. Ourwork could
contribute to the study of phase transition and the design of qubits with long dephasing time.

2.Quantummodel

We set up a quantummodel to study the relaxation process around phase transition points as shown infigure 1.
To elucidate the dynamical process, we introduce a systemwith theHamiltonianHs(ξ) under a phase transition
fromphase I to phase II driven by the control parameter ξ, e.g. temperature, pressure,magnetic field and
interaction constants. For simplicity and generality, we consider amulti-level system coupled to a bosonic bath,
i.e. a generalized spin-bosonmodel. Themodel isfirstmapped to anothermodel with the electronic states
coupled to a single harmonicmode damped by anOhmic bath [46–48]. TheHamiltonian of the system is then
written as

Figure 1.The Schematic of the state coupling in Phase I , II and at the phase transition points in amulti-level system. In Phase I and II,
only one excited state and one ground state are considered. At the phase transition point, all the four states are coupled to each other
due to the phase fluctuation.We assume that the quantum state ñgi∣ in the ith phase acquires a continuous Pancharatnam-Berry phase
θi(ξ)with the change of the control parameters ξ. The phase transition induces a geometric phase difference δ between the two ground
states with = = á ñ á ñd q q-e e g g g gi i

1 2 1 2
2 1 ∣ ∣ ∣ ∣( ) at ξc. Here, we have ignored the dynamical phase.
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† gives the occupation in the state i,Vij is the real coupling (hybridization)

constant between states j and i, e.g. Heisenberg exchange interaction, spin–orbit coupling constant, atom-field
coupling strength. a† is the creation operator for the bosonicmodewith frequencyω.We further define the
electron-boson self-energy e l w= i i

2 , and the self-energy difference e l l w= - ij i j
2( ) aswell as the energy

gap e eD = - - -E Eij i i j j( ) ( ) between two states.Ei,Vij,ω andλi are the functions of the tuning parameter ξ.
TheOhmic bath damping is introduced by a dissipative Schrödinger equation, inwhich a dissipative

operator iD is added to theHamiltonian to describe the bath induced dissipation on the system [46],

y
y

ñ
= + ñi

d t

dt
H iD t , 20

∣ ( ) ( )∣ ( ) ( )

whereH0= e SHse
− S is the Fröhlich transformation ofHswith w l= å -S n a a1 i i i ( )† . The eigenvectors

|ψin〉 ofH0 are selected as the basis of the state iwith n excited bosonmodes.We still need the detailed time
evolution formula forPin(t). On one hand, the coupling to the surroundings relaxes a state with n bosons to a
n− 1 boson state by the emission of bosons. On the other hand, the probability of the n-boson state increases
due to the decay of the state with n+ 1 bosons. This gives a change in the probability of the n-boson state

= - G + + G +
dP t

dt
n P t n P2 2 1 , 3in

in i n, 1
( ) ¯ ( ) ( ) ¯ ( )

where y y= á ñP t tin in
2( ) ∣ ∣ ( ) ∣ , prG = V 2¯ ¯ ¯ is the environmental relaxation constant, where r̄ is the effective

environmental boson density of states and V̄ is the interaction between the local system and the environment.
The dissipative Schrödinger equation effectively incorporates both the strong electron-boson coupling and
environmentmemory effects by introducing the bosonicmode in the system, whichwere described previously
[49]. Details of the dissipative Schrödinger equation are provided in the SupplementalMaterials (SM) [50].

3.Dynamics at phase transition point

The cascade decay in amulti-level system could be effectively described by a two-level system.One of them is the
excited state and the other is the ground state [46]. Therefore, in this paper, we only consider the relaxation
process in such a two-level system.We assume that theOhmic bath is the same in two different phases. The
ground states are represented by ñg1∣ and ñg2∣ , and the excited states ñe1∣ and ñe2∣ in phase I and II , respectively. At
the phase transition point, we assume the four states in phase I and II coexist due to phase fluctuation. There are
inter couplings between the states in phase I and II, such asVg ei j

,Vg gi j
andVe ei j

with i≠ j. Importantly, we assume

that the quantum state acquires a Pancharatnam-Berry phase θi(ξ)with the change of the control parameters ξ in
the ith phase. The phase transition induces a geometric phase difference between the two ground states with

= = á ñ á ñd q q-e e g g g gi i
1 2 1 2

2 1 ∣ ∣ ∣ ∣( ) at ξc. The total probability P= Pe+ Pg is normalized to 1with = +P P Pe e e1 2

for the exited states and = +P P Pg g g1 2
for the ground states. To study the relaxation of excited states, we assume

the initial state is ñe1∣ or ñe2∣ adiabatically excited from ñg1∣ or ñg2∣ in phase I or phase II, or the superposition of ñe1∣
and ñe2∣ at the phase transition point. Solving the dissipative Schrödinger equation numerically, the evolution of
all the states as a function of time clearly reflects the dynamic processes in phase I , II and at the phase transition
point. In this paper, we setÿω of the single harmonic bosonmode as the energy unit, and τ= 2π/ω as the unit
of time.

To underscore the dynamical anomaly at the phase transition points,firstly, we set the parameters Ei,λi and
Vij to ensure that the decay processes are the same in both phases.We assumeEi,Vij andω are independent of the
control parameter ξ, and onlyλimay changewith ξ. For example, the abrupt change of theλiwith respect to ξ
could be selected as the order parameter of phase transition. The energies of the ground states Eg1

and Eg2
are set

to be zero in both phases, and the energies of the excited states =E Ee e1 2
. The coupling constants between the

ground state and excited state are the same =V Vg e g e1 1 2 2
. For the electron-boson coupling, we take l l= -g g1 2

and l l= -e e1 2
, and hence e e=g g1 2

, e e=e e1 2
andD = Dg e g e1 1 2 2. Therefore, the exited states in the both phases

decay in the sameway, as shown infigure 2(a). On the other hand, at the phase transition point, we assume that
the four states coexist due to the fluctuation. The intercoupling constants between the ground states and exited
states are supposed to be the same =V Vg e g e1 2 2 1

. Furthermore, there arefluctuationswithin the ground and exited
states with =V Vg g e e1 2 1 2

. The starting states are excited adiabatically from the ground states ñg1∣ , ñg2∣ or the
mixture.We assume that there is a Pancharatnam-Berry phase difference δ between the ground state ñg1∣ and ñg2∣
of phase I and II. It is expected that the relaxation time at the phase transition point should be quite close to that
in phase I and II.However, wefind that the relaxation strongly depends on the relative phase δ due to quantum
interference effects.When there is no phase difference or δ= 0, the relaxation time at the phase transition point

3

Phys. Scr. 98 (2023) 055927 J-Y Zhang et al



is even slightly shorter than that in phase I or II as shown infigure 2(b), which is in agreement with the reduction
of relaxation time observed in the experiment at the critical point [12, 14]. On the other hand, infigure 2(c) for
δ= π, the decay time at the phase transition point could bemuch longer than that in phase I or II, as the slowing
downobserved inmany experiments [9, 16, 21, 51, 52].

More surprisingly, whenwe set δ= π, = = =V V V Vg e g e g e g e1 2 2 1 1 1 2 2
, l l=g g1 2

, l l=e e1 2
and keep the rest of

the parameters the same as infigure 2(c), the relaxation time of the exited states at the transition point even could
stretch into infinity as shown infigure 2(d), which is similar to the critical slowing down in the continuous phase
transitions but it is independent of the divergent correlation length. As a contrast, for δ= 0, the relaxation time
of the excited states is close to that in phase I or II (not shown). Actually, it has been realized in experiments since
several decades ago that the superconducting qubits composed by Josephson junctions withπ phase shifters
could be efficiently decoupled from environments and extend the phase coherence time [53–55]. To apprehend
this puzzling result, we consider a four-level systemwithout a bath.We assume that ñg g,1 2∣ are thewave vectors
for the ground states and ñe e,1 2∣ thewave vectors for the exited states. The time-dependent Schrödinger
equation of the four states is written as

Figure 2.The time evolution of state probabilities.Pe andPg are the probabilities of the excited states and ground states, respectively.
The dotted curves are obtained by fitting to the exponential function = + * + *- -y t y a e a et t t t

0 1 2
1 2( ) . The starting state ñe∣ is

excited from ñg∣ adiabatically. At the phase transition point, the starting state is the hybridization of ñe1∣ and ñe2∣ with the same
probability. ÿω = 0.06 eV of the single harmonic bosonmode is set as the unit of energy, and τ = 2π/ω ≈ 69 femtosecond (fs) as the
unit of time (more details can be found in the SM ).We take the environmental relaxation time tG = »- fs2 50 0.71( ¯ ) , as in pervious
paper [47]. (a) the probability evolution in phase I or II,D = D = 5g e g e1 1 2 2 , the coupling between the ground state and exited state

= =V V 1 2g e g e1 1 2 2 . The electron-boson coupling constants l l= - = 1 2g g1 2
and l l= - = 5e e1 2 . (b) at the phase transition

point with δ = 0, the interstate coupling = =V V 1 4g e g e1 2 2 1 and the hybridization = =V V 0.1g g e e1 2 1 2 . (c) at the phase transition
point with δ = π, other parameters are the same as (b). (d) δ = π and = = = =V V V V 1 2g e g e g e g e1 2 2 1 1 1 2 2 , l l= = 1 2g g1 2

and
l l= = 5e e1 2 and other parameters are the same as (b) and (c).
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where Ee,g are the energies of the four states, v andV are the state coupling constants. One has

ñ
= ñ + ñ + ñ + ñi

d g

dt
E g v g V e V e . 5g

1
1 2 1 2

∣
∣ ∣ ∣ ∣ ( )

When ñe1∣ has aπ phase difference with respect to ñe2∣ , i.e. ñ = ñpe e ei
1 2∣ ∣ , then the two last terms in equation (5)

cancel each other and the ground states are decoupled from the two exited states. Interestingly, figure 2(d)
indicates that even the environmental dissipation is involved, the excited states and ground states still could be
decoupled from each other by canceling. Consequently, the quantum cancellation induced by theπ phase shift is
the key to extending the phase coherence time in the experiments [53–55].

4. Semiclassical relaxationmodel

To qualitatively understand the time relaxation in the quantummodel, we appeal to a semiclassicalmodel. A
general phenomenologicalmodel is proposed to study the time evolution of the excited states near the phase
transition points.We assume that ñe e,1 2∣ are thewave vectors of the excited states in the neighboring phase I and
phase II. At the phase transition point, two excited states coexist and are weakly coupled to each other due to
phasefluctuation. The quantum coherence is set up between the two excited states.We study the time evolution
of the two exited states bymimicking themethod in the Feynman’s phenomenologicalmodel of the Josephson
junction [50].

¶ ñ
¶

= - G ñ + - ¢ ñi
e

t
E i e K iK e , 6e

1
1 1 21

∣ ( )∣ ( )∣ ( )

¶ ñ
¶

= - G ñ + - ¢ ñi
e

t
E i e K iK e , 7e

2
2 2 12

∣ ( )∣ ( )∣ ( )

where E E,e e1 2
are the energies,Γ1,Γ2 are the relaxation rates of the two exited states, respectively.WhileK is the

state coupling constant and ¢K is relaxation rate constant. IfK and ¢K are zero, then the two Schrödinger
equations describe the two excited states in the phase I and II, respectively. Near the critical point, the coupling
orfluctuation between the two statesmay induce tunneling fromone state to the other. Defining the total excited
quasiparticle density = +P P Pe e e1 2

with = á ñP e ee 1 11
∣ and = á ñP e ee 2 22

∣ , and the phase difference
= á ñ á ñde e e e ei

1 2 1 2∣ ∣ ∣ ∣, then one has
¶
¶

= - G¢ P

t
P2 , 8e

e ( )

with the effective relaxation rate

a dG¢ =
G + G

+ ¢
P P

P
K cos , 9e e

e

1 21 2 ( )

where a = á ñe e P2 e1 2∣ ∣ ∣ and 0� α� 1. Since G G > G + G > G GP P Pmax , min ,e e e1 2 1 2 1 21 2
( ) ( ) ( ), the relaxation

rate should change smoothly fromone phase to the other if the quantum coherence in the last termof
equation (9) is ignored.However, the quantum coherence could strongly affect the relaxation rate. For example,
if we further assume ¢ = G = G = GK 1 2 , then, the effective relaxation rate reads,

a dG¢ = + G1 cos . 10( ) ( )

Since dcos could be zero, positive or negative, one has G¢ G 0 2 .When δ= 0, G¢ is larger thanΓ.While
G¢ = 0 signifies the relaxation time t¢ = G¢1 approaching infinity, similar to the critical slowing down.

In order to compare the quantum and semiclassicalmodels, we study the influence of the relative phase δ on
the relaxation time quantitatively in bothmodels.We define t90% as the time for the ground state reaching 90
percent of the total population. As shown infigure 3, the dependence of t90% on δ in the quantummodel agrees
well with that in the semiclassicalmodel.With δ varying from0 toπ, the decay rate decreases gradually and the
value of t90% is strongly enhanced. For instance, when there is no phase difference or δ= 0, t90% at the phase
transition point is even slightly shorter than that in phase I or II. On the other hand, for δ= π, t90% at the phase
transition point ismuch longer than that in phase I or II. In the semiclassicalmodel, using the parameters in the
quantummodel,Γ of the excited states is calculated by Fermi’s golden rule [46]
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F V
11

n ge
2
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whereVge is the coupling strength between the ground state and excited state and Fn= e− gg n/n! is the Franck-
Condon factor with n≈Δge/ÿωwith energy gap l w l wD = - - - E Ege e e g g

2 2( ) ( ), and g= εge/ÿω is the
Huang-Rhys factor with the electron-phonon selfenergy difference e l l w= - ge e g

2( ) . At phase transition
point, the decay time = - G¢t ln 0.1 290% with a dG¢ = + G1 cos( ) . In the phase I or II,

= - Gt ln 0.1 290% is a constant around 4.16τ.

5.Discussion and conclusions

The phase difference between the ground state and the excited state is not always exactly the same. For example,
in the XX spinmodel, the phase difference between the ground state and the excited state changes from0 toπ
near the critical point [43]. Interestingly, the anomaly of the relaxation time dominantly originates from the
relative phase difference between the two excited states belonging to the phase I and II, respectively, which could
be roughly understood fromour semiclassicalmodel and the equation (5) of the 4-levelmodel without
dissipation. Furthermore, within the single phase I or II, the phase difference between the ground state and the
excited state has limit effects on the relaxation time. The relative phase between different states could be tuned by
externalfields.

To conclude, we have proposed that the conventional phase transition and quantumphase transition could
be featured by the Pancharatnam-Berry phase factor.We assumed thatwith the change of the control parameter
in theHamiltonian, the quantum state accumulates a geometric phase and there is abrupt shift of the phase at
phase transition points. Applying the dissipative Schrödinger equation, we studied the dynamical evolution of
the generalized spin-bosonmodel. At the phase transition point, the geometric phase difference between the
states belonging to neighboring phases results in the universal anomalies of dynamics via quantum interference.
Since the geometric phase strongly affect the dynamical relaxation near phase transition points, experimental
measurements of the dynamical anomalies could be applied to probe the phase transition. The effects of the
geometric phase on the relaxation times in the quantummodel qualitatively agrees with our semiclassicalmodel.
The geometric phase can increase or decrease the relaxation time at phase transition points, which coincides
with the experiments and existingmodels. Furthermore, by adjusting some parameters and setting aπ phase
shift, we found that the relaxation time of the excited states even could be divergent, which agrees well with
experiments of the superconducting π-junction.Ourwork presented theoretical evidences for studying the
phase transition by introducing the geometric phase, which is benefited for the design of qubits with a long
dephasing time for quantum computation and communications.

Figure 3.The time t90% for the ground state reaching its 90%population as a function of the geometric phase difference δ at phase
transition points. The relaxation times at the critical point could be longer or shorter than that in a single phase, in agreement with the
experiments. Themodel parameters are the same asfigure 2(c). Due to thefluctuations of the probability with time, the calculation
results of the dissipative Schrödinger equation are fitted to exponential functions as shown infigure 2, and the triangles collected by
solid red line denote t90% obtained from thefitting curves.With the change of the relative phase δ, the decay times of the excited states
vary roughly from4τ to 11τ. The dashed blue curve is given by the semiclassicalmodel at phase transition point with

= - G¢t ln 0.1 290% , where a dG¢ = + G1 cos( ) according to equation (10)withα = 0.6. In the semiclassicalmodel,Γ is
calculated by Fermi’s golden rule in equation (11) using the parameters in the quantummodel. In the phase I or II,

t= - G »t ln 0.1 2 4.1690% is a constant denoted by the horizontal dashed black line.
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