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Abstract

Dynamical anomalies are often observed near both the continuous and first-order phase transition
points. We propose that the universal anomalies could originate from the geometric phase effects. A
Pancharatnam-Berry phase is accumulated continuously in quantum states with the variation of
tuning parameters. Phase transitions are supposed to induce an abrupt shift of the geometric phase. In
our multi-level quantum model, the quantum interference induced by the geometric phase could
prolong or shorten the relaxation times of excited states at phase transition points, which agrees with
the experiments, models under sudden quenches and our semi-classical model. Furthermore, we find
that by setting a phase shift of 7, the excited state could be decoupled from the ground state by
quantum cancellation so that the relaxation time even could diverge to infinity. Our work introduces
the geometric phase to the study of conventional phase transitions as well as quantum phase transition,
and could substantially extend the dephasing time of qubits for quantum computing.

1. Introduction

Phase transitions are of crucial importance in physics since a variety of static and dynamic properties of systems
are changed [1-5]. In a long history, the study of phase transition focuses on the static thermodynamic
properties in equilibrium states. Recently, it was shown that dynamical measurements could provide a direct
insight into the investigation of the complex transitions [6—15]. Remarkably, the slowing-down dynamics near
the phase transition point have been observed in solids [9, 15-17], glasses [ 18] and even microbial systems [19].
In the symmetry-breaking phase transition, the critical slowing down under perturbation could clearly be
observed in both experiments and theoretical models at critical points [ 16, 20-23]. The divergence of the
relaxation time is attributed to the divergent correlation length according to the renormalization group theory
[24]. However, near the first-order phase transition, the ultrafast relaxation time from the photoexcited state to
the equilibrium state also increases by orders of magnitude in charge-ordered LaSrFeO [9]. Similarly, slowing-
down dynamics were observed near the first-order Mott transition and structural phase transition [15, 17]. More
surprisingly, in the superconducting and antiferromagnetic phase transitions, the lifetimes of the decay are even
shortened at the critical point [12, 14]. Furthermore, in some 1D short-range spin models under sudden
quenches, the fastest relaxations are unexpectedly found at the critical points, in contrast to the critical slowing
down [5, 25-27]. Therefore, the dynamical anomalies near phase transition points are expected to be universal
phenomena in a vast number of systems.

In this paper, we propose that the universal anomalies of dynamics near phase transition points could
originate from the effect of the geometric phase. Date back to 1956, Pancharatnam proposed that the relative

©2023 IOP Publishing Ltd
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Figure 1. The Schematic of the state coupling in Phase I, IT and at the phase transition points in a multi-level system. In Phase I and II,
only one excited state and one ground state are considered. At the phase transition point, all the four states are coupled to each other
due to the phase fluctuation. We assume that the quantum state |g;) in the ith phase acquires a continuous Pancharatnam-Berry phase
0(&) with the change of the control parameters £. The phase transition induces a geometric phase difference § between the two ground
states with e = ¢/2=% = (g|¢} /| (g|g,) |at . Here, we have ignored the dynamical phase.

phase between two polarized light beams determines the intensity of the interferogram [28]. Later in 1984, Berry
realized that besides the dynamical phase, the quantum state acquires a geometric phase in the adiabatic and
cyclic evolution of the time-dependent Hamiltonian [29]. The geometric phase is then generalized by loosening
the constraint of adiabaticity, cyclicity and unity [30, 31], and applied in many fields ranging from high-energy
physics [32] to condensed matter [33], statistics [34, 35], molecular [36, 37], ultracold atoms [38], optics [39, 40]
and quantum computation [41].

The quantum criticality have been investigated based on the geometric phase of ground states in the XY Spin
model [42, 43], the ground state overlap in Dicke mode [44], the ground-state energy and its derivative in Rabi
model [45]. However, in many-body systems, it is difficult or impossible to experimentally measure the ground
state energy and the functional dependency of the geometric phase on parameters. Theoretically, the system
Hamiltonian often could not be identified for along time as in cuprates, iron pnictides, manganites and so on. In
this paper, we prove the dynamical anomalies at phase transition points are universal as the result of quantum
coherence, without the need for the exact system Hamiltonian or the precise dependency of the geometric
phases on control parameters. Our model only includes some relevant quantum states of systems and coupling
interactions. The information of the energy gaps between the states and the coupling constants could be
measured via experiments. Therefore, the multi-level model is not limited to a special system. We suppose that
Pancharatnam-Berry phases appear in quantum states and change continuously with tunable parameters such
as external fields in the Hamiltonians. In particular, such phases abruptly change at phase transition points.
Using the dissipative Schrodinger equation, we study the geometric phase effects on the dynamical evolution of a
multi-level system near the phase transition point based on the generalized spin-boson model. Near the phase
transition points, the relative phase between the states belonging to neighboring phases induces quantum
interference, which results in the universal anomalies of the dynamics. The dynamical anomalies could be
applied to probe the phase transition in experiments. We also use a semi-classical model to corroborate the
geometric phase effects on the relaxation of the excited states. The relaxation time at phase transition points
could become longer or shorter, which is in agreement with the experiments. Furthermore, we show that the
relaxation time even could go to infinity by setting some peculiar coupling parameters. Our work could
contribute to the study of phase transition and the design of qubits with long dephasing time.

2. Quantum model

We set up a quantum model to study the relaxation process around phase transition points as shown in figure 1.
To elucidate the dynamical process, we introduce a system with the Hamiltonian Hy(£) under a phase transition
from phase I to phase II driven by the control parameter &, e.g. temperature, pressure, magnetic field and
interaction constants. For simplicity and generality, we consider a multi-level system coupled to a bosonic bath,
i.e. a generalized spin-boson model. The model is first mapped to another model with the electronic states
coupled to a single harmonic mode damped by an Ohmic bath [46—-48]. The Hamiltonian of the system is then
written as
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Hy=> Eicici+ > Vi(cicj + hec)
i i
+ > Nicfci(a" + a) + 7wa'a, (1

where E; is the energy level and n; = cf ci gives the occupation in the state i, V};is the real coupling (hybridization)
constant between states jand i, e.g. Heisenberg exchange interaction, spin—orbit coupling constant, atom-field
coupling strength. a' is the creation operator for the bosonic mode with frequency w. We further define the
electron-boson self-energy ; = \?/ /i, and the self-energy difference gij = (A — A )?//iw as well as the energy
gap A = (E; — &) — (Ej — €j) between two states. Ej, Vj;, wand ); are the functions of the tuning parameter .

The Ohmic bath damping is introduced by a dissipative Schrodinger equation, in which a dissipative
operator iD is added to the Hamiltonian to describe the bath induced dissipation on the system [46],

| (1))
dt

where Hy = e°H,e™ ®is the Fréhlich transformation of Hywith § = 1/ /wy>;niNi(a" — a). The eigenvectors
|1);,) of Hy are selected as the basis of the state i with 1 excited boson modes. We still need the detailed time
evolution formula for P;,(f). On one hand, the coupling to the surroundings relaxes a state with 7 bosons to a
n — 1 boson state by the emission of bosons. On the other hand, the probability of the n-boson state increases
due to the decay of the state with # + 1 bosons. This gives a change in the probability of the n-boson state

dP in(t) _
dt
where P,,(t) = | (¢i| ¥ (1)), T = wpV?/7 is the environmental relaxation constant, where p is the effective
environmental boson density of states and V is the interaction between the local system and the environment.
The dissipative Schrodinger equation effectively incorporates both the strong electron-boson coupling and

environment memory effects by introducing the bosonic mode in the system, which were described previously
[49]. Details of the dissipative Schrodinger equation are provided in the Supplemental Materials (SM) [50].

i%2

= (Hp + iD)|9 (1)), ()

—2nTPy,(t) + 2(n + 1)IPi i1, 3)

3. Dynamics at phase transition point

The cascade decay in a multi-level system could be effectively described by a two-level system. One of them is the
excited state and the other is the ground state [46]. Therefore, in this paper, we only consider the relaxation
process in such a two-level system. We assume that the Ohmic bath is the same in two different phases. The
ground states are represented by |g ) and |g,), and the excited states |e;) and |e,) in phase I and II, respectively. At
the phase transition point, we assume the four states in phase I and II coexist due to phase fluctuation. There are
inter couplings between the states in phase [ and II, such as Vgi ep Vgi g and V,, ¢ with 7 = j. Importantly, we assume
that the quantum state acquires a Pancharatnam-Berry phase 0,(£) with the change of the control parameters £ in
the ith phase. The phase transition induces a geometric phase difference between the two ground states with

e = !~ = (g]g)) /| (glg,) |at&. The total probability P = P, + P,is normalized to 1 with B, = B, + B,
for the exited statesand P, = P, + P, for the ground states. To study the relaxation of excited states, we assume
the initial state is |e;) or |e,) adiabatically excited from |g) or |g,) in phase I or phase I, or the superposition of | e;)
and |e,) at the phase transition point. Solving the dissipative Schrodinger equation numerically, the evolution of
all the states as a function of time clearly reflects the dynamic processes in phase I, Il and at the phase transition
point. In this paper, we set /uww of the single harmonic boson mode as the energy unit, and 7 = 27/w as the unit

of time.

To underscore the dynamical anomaly at the phase transition points, firstly, we set the parameters E;, A;and
Vjjto ensure that the decay processes are the same in both phases. We assume E;, Vj;and w are independent of the
control parameter &, and only \; may change with £. For example, the abrupt change of the \; with respect to £
could be selected as the order parameter of phase transition. The energies of the ground states E, and E, are set
to be zero in both phases, and the energies of the excited states E, = E,,. The coupling constants between the
ground state and excited state are the same V; ., = V, ,,. For the electron-boson coupling, we take A, = — A,
and A\, = —\,,andhence e, = ¢y, &, = &,,and Ay, = Ay .. Therefore, the exited states in the both phases
decay in the same way, as shown in figure 2(a). On the other hand, at the phase transition point, we assume that
the four states coexist due to the fluctuation. The intercoupling constants between the ground states and exited
states are supposed to be the same Vg ,, = V, .. Furthermore, there are fluctuations within the ground and exited
stateswith Vg, = V,,,. The starting states are excited adiabatically from the ground states |g), |g,) or the
mixture. We assume that there is a Pancharatnam-Berry phase difference 6 between the ground state |g ) and |g,)
of phase I and II. It is expected that the relaxation time at the phase transition point should be quite close to that
in phase I and II. However, we find that the relaxation strongly depends on the relative phase ¢ due to quantum
interference effects. When there is no phase difference or § = 0, the relaxation time at the phase transition point
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Figure 2. The time evolution of state probabilities. P, and Py are the probabilities of the excited states and ground states, respectively.
The dotted curves are obtained by fitting to the exponential function y (t) = y, + a * e/ + a, * e~'/". The starting state |e) is
excited from |g) adiabatically. At the phase transition point, the starting state is the hybridization of |e;) and |e,) with the same
probability. fiw = 0.06 eV of the single harmonic boson mode is set as the unit of energy, and 7 = 27/w = 69 femtosecond (fs) as the
unit of time (more details can be found in the SM ). We take the environmental relaxation time (2I')~! = 50 fs ~ 0.77, as in pervious
paper [47]. (a) the probability evolution in phase I or II, Aglq =A e =5 the coupling between the ground state and exited state
Veer = Ve = 1/2. The electron-boson coupling constants Ay = —Ag, = 1 / V2 and Aoy = —Aey = V5. (b) at the phase transition
point with § = 0, the interstate coupling V; ., = V., = 1/4 and the hybridization Vg o, = V;,., = 0.1.(c) at the phase transition
point with § = 7, other parameters are the sameas (b). (d) = wand Vg o, = Vi, = Vgo = Vigoy = 1/2, A = Ay, = l/ﬁ and

Ao = Aep = /5 and other parameters are the same as (b) and (c).

is even slightly shorter than that in phase I or IT as shown in figure 2(b), which is in agreement with the reduction
of relaxation time observed in the experiment at the critical point [12, 14]. On the other hand, in figure 2(c) for

6 = m, the decay time at the phase transition point could be much longer than that in phase I or II, as the slowing
down observed in many experiments [9, 16,21, 51, 52].

More surprisingly, whenwesetd =, Voo, = Voo, = Vooy = Voo Ay = Ag, Ay = A, and keep therest of
the parameters the same as in figure 2(c), the relaxation time of the exited states at the transition point even could
stretch into infinity as shown in figure 2(d), which is similar to the critical slowing down in the continuous phase
transitions but it is independent of the divergent correlation length. As a contrast, for 6 = 0, the relaxation time
of the excited states is close to that in phase I or II (not shown). Actually, it has been realized in experiments since
several decades ago that the superconducting qubits composed by Josephson junctions with 7 phase shifters
could be efficiently decoupled from environments and extend the phase coherence time [53-55]. To apprehend
this puzzling result, we consider a four-level system without a bath. We assume that |g, g,) are the wave vectors
for the ground states and |, e,) the wave vectors for the exited states. The time-dependent Schrodinger
equation of the four states is written as
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ler) E. v V.V ler)
d |lez) v E V. V[lle)
= = , )
dt | 1g) VoV Ee vlg)
1) VoV Bl
where E, ;are the energies of the four states, vand V are the state coupling constants. One has
o dl
i jtl> = Eclg) + vlg,) + Vle)) + Vley). 5)

When |e;) has a 7 phase difference with respect to |e,), .. [e;) = e™|e,), then the two last terms in equation (5)
cancel each other and the ground states are decoupled from the two exited states. Interestingly, figure 2(d)
indicates that even the environmental dissipation is involved, the excited states and ground states still could be
decoupled from each other by canceling. Consequently, the quantum cancellation induced by the 7 phase shift is
the key to extending the phase coherence time in the experiments [53-55].

4, Semiclassical relaxation model

To qualitatively understand the time relaxation in the quantum model, we appeal to a semiclassical model. A
general phenomenological model is proposed to study the time evolution of the excited states near the phase
transition points. We assume that | e}, e,) are the wave vectors of the excited states in the neighboring phase I and
phase II. At the phase transition point, two excited states coexist and are weakly coupled to each other due to
phase fluctuation. The quantum coherence is set up between the two excited states. We study the time evolution
of the two exited states by mimicking the method in the Feynman’s phenomenological model of the Josephson
junction [50].

0 ; ‘
i7 (|9€t1> = (E,, — il)]er) + (K — iK")|e2), ©
il a(l;tz - (Ee, — ily)|ez) + (K — iK")|ey), @

where E,, E,, are the energies, I'}, I'; are the relaxation rates of the two exited states, respectively. While Kis the
state coupling constant and K is relaxation rate constant. If Kand K’ are zero, then the two Schrodinger
equations describe the two excited states in the phase I and II, respectively. Near the critical point, the coupling
or fluctuation between the two states may induce tunneling from one state to the other. Defining the total excited
quasiparticle density B, = B, + B, with P, = (ej|e;)and B, = (ey|e,), and the phase difference

e’ = (ele,)/| (elle) |, then one has

OF,
ot

fhi—= = =2I"R, )

with the effective relaxation rate

— EPel + FZPEZ

I’ + aK’cosé, 9

e

where o = 2| (ej|e) | /B and 0 < o < 1. Since max(T}, 1) > (LB, + ILR,))/P. > min(I}, [}), the relaxation
rate should change smoothly from one phase to the other if the quantum coherence in the last term of

equation (9) is ignored. However, the quantum coherence could strongly affect the relaxation rate. For example,
if we further assume K’ = I} = I}, = T, then, the effective relaxation rate reads,

IM=(@1+ acosd)T. (10)

Since cos & could be zero, positive or negative, one has 0 < IV < 2I". When § = 0, I' is larger than T". While
I'" = 0 signifies the relaxation time 7/ = 1/T" approaching infinity, similar to the critical slowing down.

In order to compare the quantum and semiclassical models, we study the influence of the relative phase § on
the relaxation time quantitatively in both models. We define 990, as the time for the ground state reaching 90
percent of the total population. As shown in figure 3, the dependence of t5qq, 0n ¢ in the quantum model agrees
well with that in the semiclassical model. With 6 varying from 0 to 7, the decay rate decreases gradually and the
value of t9ge, is strongly enhanced. For instance, when there is no phase difference or § = 0, 99, at the phase
transition point is even slightly shorter than that in phase I or II. On the other hand, for § = 7, 99, at the phase
transition point is much longer than that in phase I or II. In the semiclassical model, using the parameters in the
quantum model, I of the excited states is calculated by Fermi’s golden rule [46]

5
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t90% /T

Figure 3. The time f999, for the ground state reaching its 90% population as a function of the geometric phase difference ¢ at phase
transition points. The relaxation times at the critical point could be longer or shorter than that in a single phase, in agreement with the
experiments. The model parameters are the same as figure 2(c). Due to the fluctuations of the probability with time, the calculation
results of the dissipative Schrodinger equation are fitted to exponential functions as shown in figure 2, and the triangles collected by
solid red line denote to¢0, obtained from the fitting curves. With the change of the relative phase 6, the decay times of the excited states
vary roughly from 47 to 117. The dashed blue curve is given by the semiclassical model at phase transition point with

toges = — 7/ In0.1/2I", where I" = (1 + « cos §)I" according to equation (10) with o = 0.6. In the semiclassical model, I is
calculated by Fermi’s golden rule in equation (11) using the parameters in the quantum model. In the phase I orII,

tooee = —7 In0.1/2T" &~ 4.167 is a constant denoted by the horizontal dashed black line.

TE, Vg,
I=—- (11)

where V. is the coupling strength between the ground state and excited state and F,, = e ¥¢"/n/is the Franck-
Condon factor with n ~ A,/ fiwwith energy gap A, = (E, — N2/ ) — (Eg — )\é/m}), and g = g,/ hwis the
Huang-Rhys factor with the electron-phonon selfenergy difference ;. = (A, — Ag )?//w. At phase transition
point, the decay time fog0, = —/ In0.1/2I" with T = (1 + « cos §)T". In the phaseTorI],

toon, = — 72 In0.1/2T" is a constant around 4.167.

5. Discussion and conclusions

The phase difference between the ground state and the excited state is not always exactly the same. For example,
in the XX spin model, the phase difference between the ground state and the excited state changes from 0 to 7
near the critical point [43]. Interestingly, the anomaly of the relaxation time dominantly originates from the
relative phase difference between the two excited states belonging to the phase I and I1, respectively, which could
be roughly understood from our semiclassical model and the equation (5) of the 4-level model without
dissipation. Furthermore, within the single phase I or II, the phase difference between the ground state and the
excited state has limit effects on the relaxation time. The relative phase between different states could be tuned by
external fields.

To conclude, we have proposed that the conventional phase transition and quantum phase transition could
be featured by the Pancharatnam-Berry phase factor. We assumed that with the change of the control parameter
in the Hamiltonian, the quantum state accumulates a geometric phase and there is abrupt shift of the phase at
phase transition points. Applying the dissipative Schrédinger equation, we studied the dynamical evolution of
the generalized spin-boson model. At the phase transition point, the geometric phase difference between the
states belonging to neighboring phases results in the universal anomalies of dynamics via quantum interference.
Since the geometric phase strongly affect the dynamical relaxation near phase transition points, experimental
measurements of the dynamical anomalies could be applied to probe the phase transition. The effects of the
geometric phase on the relaxation times in the quantum model qualitatively agrees with our semiclassical model.
The geometric phase can increase or decrease the relaxation time at phase transition points, which coincides
with the experiments and existing models. Furthermore, by adjusting some parameters and setting a 7 phase
shift, we found that the relaxation time of the excited states even could be divergent, which agrees well with
experiments of the superconducting 7-junction. Our work presented theoretical evidences for studying the
phase transition by introducing the geometric phase, which is benefited for the design of qubits with along
dephasing time for quantum computation and communications.

6
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