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Pressure (P) has long been recognized as an important 
thermodynamic variable that can adjust or even revers-
ibly modulate many physical properties of materials, 
including the thermal conductivity that is critical in 
the understanding of thermal transport in Earth and 
planetary interiors and in condensed matter. However, 
research was limited to relatively low pressures for a 
long time, owing to previous unattainability in appara-
tus and techniques, until the turn of this century, when 
the megabar (100 GPa) pressure diamond anvil cell 
(DAC), together with a series of in-​laboratory integrated 
characterization techniques, were developed1–5. Static 
high-​pressure generation techniques primarily consist 
of piston–cylinder cells (with a pressure limit <10 GPa), 
multi-​anvil cells (with a maximum pressure of ~90 GPa) 
and DACs (with a highest pressure up to ~1,000 GPa)6–12.

The DAC has become the broadest platform for 
theoretical and experimental research at high pres-
sure. There are several advantages of DACs. Pressure 
can be conveniently determined and monitored by the 
fluorescence peak shift of a ruby sphere crystal (widely 
available until ~100 GPa) placed close to the sample of 
interest, with an uncertainty of 2–4%, or determined 
by the diamond Raman peak positions collected from 
the near-​sample diamond anvil (can be calibrated up to 
~410 GPa with an uncertainty of ~15%)13,14. In addition, 
DACs have been successfully combined with various 

physical and chemical characterization techniques, in 
which a hydrostatic, stable and homogeneous or even 
uniaxial or other deviatoric compressive strain (at least 
30%) can be generated without any additional damage 
to samples15–22.

Although practical applications and technologies 
requiring pressures to be as high as GPa levels are quite 
rare, pressure is a powerful way to study the fundamen-
tal properties of materials. It can be used to continu-
ously tune material properties and to test the validity 
of theoretical predictions at various compression states 
or other extreme conditions. By exploring the pres-
sure dimension, many unexpected physical properties 
can emerge, as all material properties are expected to 
undergo changes at various compression states, demon-
strating a crossover from the ordinary condensed-​matter 
regime to a dense-​matter physics regime15,19,21,23–33. It is 
not surprising to see electronic, elastic, structural, mag-
netic and chemical properties being altered drastically 
upon compression, mainly due to the interatomic bond-
ing and orbital coupling, interlayer wavefunction overlap 
and valence band splitting being modified19,21,22,27,31,34,35. 
The phononic or vibrational properties can also be 
greatly changed in many materials at high pressures, 
and some of them can be directly investigated by 
in situ Raman spectroscopy and Brillouin scattering 
techniques36–39. More importantly, material properties 
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can be tuned by pressure across the various regimes 
according to conventional classification, such as insula-
tors, semiconductors and superconductors15,20,23,26,33,40,41, 
amorphous and crystalline solids and so on, and unique 
materials or phases can also be created42–45.

To investigate these physical and chemical prop-
erties under pressure, continued progress has been 
made in high-​pressure characterization techniques 
applied to samples within the DAC apparatus, including 
structural, optical, electrical, magnetic and thermal 
properties19,21,31,46–48. For example, the changes of lat-
tice parameters and phase structure and the resultant 
strain induced by pressure can be accurately obtained 
by the combination of synchrotron X-​ray diffrac-
tion with DAC techniques; these developments have 
resulted in progress, including breakthroughs in explo-
ration of metallic hydrogen and high-​temperature 
superconductors19,28,29,31. In addition, some critical phe-
nomena, such as phase evolution, stress state and mag-
nitude, phonon modes and electronic bandgaps, which 
change upon compression or the equivalent strain, can 
be sensitively and accurately detected experimentally 
by combining techniques such as in situ micro-​Raman, 
micro-​photoluminescence and absorption spectroscopies 
with the DAC techniques15,20–22,24,30,49–52.

Despite such achievements in high-​pressure charac-
terization of material properties, thermophysical prop-
erties remain one of the most difficult to be reliably and 
accurately measured at high pressures. Thermophysical 
properties play crucial roles in thermal transport and 
thermal management; the latter has been a critical bot-
tleneck in many high-​power devices and heat exchange 
systems, for example, transistors and thermoelectric 
(TE) devices, and electronic systems in mobile phones 
and computers53–56. The thermophysical properties dis-
cussed in this Review are emphasized in non-​metallic 
materials in which phonons are the major heat carriers; 
these properties mainly involve thermal diffusivity, ther-
mal conductivity (κ), heat capacity, phonon velocity, pho-
non mean free path (MFP), phonon lifetime, interfacial  
thermal conductance (ITC) and thermal resistance.

Phonons have a large variation in their frequencies 
and MFPs; for bulk materials at room temperature, the 
MFP is normally in the range 1–100 nm, which is within 
the microstructure scale of bulk materials57. However, 
in micrometre-​scale and even nanometre-​scale samples, 
the phonon MFP is comparable or even limited to the 
sample length or width or thickness, resulting in stronger 

boundary scatterings and, thus, lowering the κ. In terms 
of common measurements and applications, κ is the 
most discussed correlative thermal parameter and can 
be affected by sample thickness, width and length58, and 
by strong point defects or dislocation scatterings and iso-
tope scatterings59. κ is a temperature-​dependent property 
and, in different temperature regimes, it varies through 
different phonon scattering mechanisms; thus, tempera-
ture, the most often used external stimulus because of its 
ready availability, is a useful variable to tune, modulate 
and control the thermal performance of materials and 
devices. In addition, strain or pressure can also be used 
to tune the κ of materials, although this research is still 
in its early stages due to the challenges in high-​pressure 
thermal characterization techniques17,18,35,47,48,60–66.

The κ values of some solids and liquids at pressures 
of only up to a few GPa, determined with errors of a 
few percent, were summarized in 1984; this summary 
includes the proposed pressure-​dependent thermal 
transport mechanisms for alkali halides, simple metals 
and non-​metallic liquids being theoretically described67. 
In 2007, the pressure dependences of the thermal prop-
erties of some geophysically relevant minerals up to 
10 GPa were summarized, reporting the re-​examined 
experimental values of the thermophysical parameters 
with higher accuracy determined using a contact-​free 
laser flash method68. More recently, some theoretical 
and experimental studies have investigated the effects 
of pressure on κ in a variety of materials, demonstrat-
ing rich high-​pressure phenomena17,18,35,47,48,63–66,69,70. 
For example, the κ of solid iron (the primary material 
in the Earth’s core) at core conditions up to 130 GPa and 
3,000 K was measured using the pulsed-​laser transient 
heating (TH) method47. Knowledge of thermal-​physical 
properties under pressure can also advance understand-
ing of heat transport mechanisms and provide useful 
guidelines for the tunability of thermal properties via 
pressure or strain method in thermal management, such 
as the recent κ measurements of MoS2 under pressure35.

This Review focuses on pressure-​induced modifica-
tions in the thermal conductivities of a range of mate-
rials, thermal transport behaviours and mechanisms 
in different material systems, and thermal applications 
under pressure ranging from ambient pressure up to 
megabar pressure. We focus on two major classes of 
materials: deep Earth’s mineral and alloys and TE mate-
rials, which greatly benefit from high-​pressure investiga-
tions. Indeed, understanding the thermal conductivity of 
the Earth’s materials is a key for understanding the deep 
Earth dynamics and the thermal history of the planet. 
Conversely, application of pressure on TE materials 
has been proved to be unique in improving the perfor-
mances of these materials in devices and elucidating 
the physical mechanisms of these performances, where 
thermal conductivity plays an important role.

Fundamentals of thermal transport
In principle, thermal transport has three major compo-
nents: conduction, radiation and convection. These com-
ponents have different thermal transport mechanisms 
and are relevant for the thermal properties of materials 
in different conditions. Near room temperature, the 

Key points

•	Thermal characterization techniques have been developed in apparatus such as 
piston–cylinder cells, multi-​anvil cells and diamond anvil cells, for both bulk and 
thin-​film materials, and for both temperature-​dependent and pressure-​dependent 
measurements.

•	Such high-​pressure thermal characterization techniques have been applied to  
gases, liquids and solids, including thermoelectric materials, Earth materials and 
semiconductor materials.

•	The results of the high-​pressure thermal conductivities of various materials are 
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•	Practical applications are given on high-​pressure and high-​temperature experimental 
simulations of materials in the Earth’s interior.
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effects of radiation are usually very small compared with 
those of conduction; thus, radiation is often neglected. 
In this Review, we focus on the thermal conduction 
of materials.

Heat flux generated and transported by conduction 
through a material is normally described by Fourier’s law 
of heat conduction (Fig. 1a):

̇ ∇Q κ T= − (1)

where ̇Q is the local heat flux (with unit Wm−2), κ is the 
thermal conductivity of material (with unit Wm−1 K−1) 
and ∇T is the temperature gradient through the mate-
rial thickness (with unit K m−1). Κ is a macroscopic-​scale 
parameter and is correlated to atomic-​level properties 
mainly through energy carriers such as phonons, elec-
trons and holes. In non-​metallic crystals such as sem-
iconductors and some thermoelectrics, the main heat 
carriers are phonons. The total thermal conductivity (κ) 

of a crystal involves contributions from a lattice (pho-
non, κl) and an electronic (electron, κe) component71, 
which is described by

∑κ κ κ C v l Lσ T= + = 1
3

+ (2)
j

j jl e v e

where Cv is the molar heat capacity at constant vol-
ume; vj is the phonon group velocity of the jth phonon 
mode; lj is the MFP of the jth phonon mode, which can 
be further expressed as lj = vjτp,j, where τp,j is the effec-
tive phonon scattering time of the jth phonon mode, 
including contributions from all scattering factors, such 
as crystalline boundaries, lattice defects and impurities, 
electrons, other phonons and van der Waals forces71–80 
(Supplementary Information); L is the Lorenz num-
ber; σe is the electrical conductivity; and T is the tem-
perature of electrons. In metals, κ is dominated by κe 
owing to the large concentration of free electrons, and 
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Fig. 1 | Thermal transport in materials at ambient and high pressures. a | Parameters in Fourier’s law of heat conduction. 
b | Interfacial thermal conductance between two materials and the in-​plane and out-​of-​plane thermal conductivity. 
Heterointerface contact normally includes conditions of full contact and limited contact, where some air voids are 
inevitably introduced during the integration (insets); both normally result in a temperature drop ΔT across the interface  
due to the mismatch of phonon scattering between the two different materials. c | Thermal transport at high pressures 
generated within a diamond anvil cell (left) and the schematic evolution of phonon density of states (DOS) and thermal 
conductivity with respect to pressure (right). In general, the application of pressure compresses the crystal lattice and 
extends the phonon frequency range, thereby, promoting the heat-​carrying ability of electrons and some phonons, bringing 
about the modification of thermal conductivity under pressure (increasing trend, decreasing trend and anomalous trend).  
d | Progress in thermal conductivity measurements at high pressures. Data points are representative works; the values of 
pressure and year are taken from refs17,18,47,132,133,148,163,173,177,266. ΔT, temperature difference from the hot to the cold terminals; 
A, cross-​sectional area; L, length of thermal transport; Q, total thermal energy of heat flow through the cross-​sectional area.
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the Wiedemann–Franz law (κe = LσeT) is traditionally 
used to calculate κe, where L = (π2/3)(kB/e)2 is normally 
applied for metals (e is the electron charge, and kB is the 
Boltzmann constant). By contrast, in non-​metals such 
as semiconductors and some minerals, the existence of 
a bandgap results in much smaller σe and, thus, smaller 
κe, making κe negligible compared with κl. Therefore, in 
this Review, we primarily discuss κl and denote it as κ.

Fourier’s law describes how efficiently the heat can be 
conducted through a material from its high-​temperature 
to low-​temperature regions. However, in practical appli-
cations of hetero-​materials, one should consider that, 
besides transport through the materials, heat must also 
be conducted across the interfaces of different materi-
als (including dissimilar, epitaxial, bonded and contact 
interfaces). In this case, the thermal transport efficiency 
is commonly evaluated by the thermal resistance

R T q= Δ / (3)

where ΔT is the temperature difference between the two 
surfaces (with unit K) and q is the rate of conduction of 
thermal energy through the two surfaces (with unit W). 
Therefore, the total thermal resistance R consists of the 
thermal conduction part of the materials that is depen
dent on the κ and thickness of the materials, as well as 
the thermal boundary resistance (TBR) at the interface 
of two different materials. TBR normally results in an 
abrupt temperature drop at the hetero-​materials inter-
faces, forming a significant bottleneck for the thermal 
transport. Mathematically, TBR is the inverse of ITC, 
which is normally expressed by the symbol of G (ref.81). 
On the one hand, ITC is a critical thermal parameter that 
governs the efficiency of thermal energy dissipation, and 
high ITC is desirable in a wide range of devices, such 
as high-​power and high-​frequency transistors, photodi-
odes, light-​emitting diodes and phase-​change memory 
devices53,54,82–85. On the other hand, low ITC also implies 
that the equivalent ultrathin interfacial material formed 
at the heterogeneous interface has low κ; this is desirable 
for applications in TE materials and thermal barrier coat-
ings, among others56,86–89. All these applications require 
fundamental knowledge of ITC-​related thermal-​physical 
theories and progress to date has been be achieved by 
focusing investigations on its relationship with inter-
facial properties and the near-​interface material 
properties64,65,90–98 (Fig. 1b; Supplementary Information).

Application of extreme pressure can profoundly affect 
the phonon properties by changing the elastic constants, 
phonon velocities, phonon lifetimes, phonon densities  
of states, interfacial bonding stiffness, and so on. Many of  
these pressure-​dependent phonon behaviours can be 
directly investigated by inelastic optical scattering. For 
example, the phonon velocities and elastic properties can 
be measured by in situ high-​pressure Brillouin scatter-
ing techniques39,99 and gigahertz ultrasonic interferom-
etry techniques100–103. The pressure-​dependent phonon 
dispersion and density of states can be measured by 
inelastic X-​ray scattering techniques104–106 and inelastic 
neutron scattering techniques107–109.

These phonon behaviours are closely related to 
the phonon transport (and, thus, thermal transport) 

properties of materials. Upon compression, various 
pressure dependences of κ are reported, making the 
detailed mechanism of thermal transport modulated 
by pressure particularly complicated (Fig. 1c). In gen-
eral, the pressure dependences of κ are classified into 
increasing, decreasing, independent and anomalous 
trends. Normally, κ increases dramatically under pres-
sure, because the strain generated by pressure enhances 
the atomic interactions and compresses the bonds, 
thereby, modifying the phonon dispersions to greatly 
enhance the phonon velocities. Such an enhancement 
of κ is, in some cases, nonlinear. This nonlinearity is 
found to arise from the combined effects of decreased 
phonon relaxation time coupled with increased phonon 
group velocity110. Note that the κe discussed above largely 
depends on the σe and, thus, can have several orders of 
magnitude increase; however, it is still negligible com-
pared with the value of κl in non-​metals. However, κ can 
also decrease under pressure; such a decrease is thought 
to result from pressure-​induced phonon anharmonicity 
and phonon softening111. First-​principles calculations 
reveal that the decreased κ under pressure is mainly a 
result of the stronger third anharmonic interaction, the 
large mass ratio and the significant acoustic–optical fre-
quency gap112. When κ is independent of pressure, this 
is currently thought to be caused by strong electronic 
correlation effects driven by the electronic topological 
transition113.

As to the anomalous trend of κ, several mechanisms 
have been proposed. In the case of the anomalously 
decreased pressure dependence of κ for some materi-
als, it is found that the intrinsic three-​phonon scatter-
ing process contributes less than in other cases, due 
to the materials’ large acoustic–optical frequency gap 
at high pressures, while more complicated scattering 
processes between acoustic phonons dominate and 
increase the overall phonon scattering63. In another case 
of non-​monotonic behaviour, κ first increases and then 
decreases with increasing pressure. Possible mechanisms 
for this behaviour are the competing scattering processes 
of three-​phonon and four-​phonon interactions at high 
pressures65 or the interplay between group velocity and 
phonon relaxation time under pressure114. In the case of 
the diverse pressure dependence of κ revealed in some 
rare-​earth pyrochlores, the competition between the 
enhancement of phonon group velocity and the reduc-
tion of phonon relaxation time determines the pressure 
dependence115.

Characterization methods
Thermal characterization techniques have been developed  
in apparatus such as piston–cylinder cells, multi-​anvil 
cells and DACs, for both bulk and thin-​film materials, and 
for both temperature-​dependent and pressure-​dependent 
measurements. The techniques are normally classified as 
steady-​state or transient methods. Among the existing 
standard thermal characterization techniques, com-
mon steady-​state methods for bulk materials are the 
absolute technique, comparative technique, radial heat 
flow method and parallel conductance method; for thin 
films, common methods are the steady-​state electrical 
heating method and the Raman-​based opto-​thermal 
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method. Transient methods for bulk materials consist 
of the pulsed power technique, the hot-​wire method 
and the transient plane source method; methods for 
thin films are the 3ω method, the laser flash method and 
the time-​domain/frequency-​domain thermoreflectance 
(TDTR/FDTR) method116–131.

Only Raman-​based opto-​thermal, laser flash and 
TDTR/FDTR are optical methods, whereas the others 
are electrical methods that require complicated fabrica-
tion of heaters, sensors or thermocouples. The size of the 
electrical beads or pads is normally larger than the cham-
ber size of the high-​pressure apparatus, making these 
electrical-​based high-​pressure thermal characterization 
techniques challenging to perform. Piston–cylinder  
cells and multi-​anvil cells are larger in size than the 
DAC, allowing more sample space for the thermocouple 
layout, but are normally limited at pressure range below 
30 GPa (note that the multi-​anvil cell is a commonly 
used first-​order apparatus, with a wide sample space 
and a pressure limit <10 GPa)10,132–135. However, pres-
sure of at least 20 GPa is usually needed to obtain ~50% 
increase in parameters such as the elastic constants that 
are relevant to thermophysical properties99,136–139. A DAC 
can generate much higher pressure exceeding 100 GPa, 
but the narrow space left between the anvils makes it 

extremely difficult to spread the wires, thermocouples 
and heaters.

In fact, the high-​pressure thermal characteriza-
tion methods have nearly 100 years of development 
(Fig. 1d). The main steady-​state methods used in piston– 
cylinder pressure cells or multi-​anvil cells140 are the ther
mocouple and heater method10,141–143 and the Ångström  
method132,134,135,140,143–146 (Fig. 2a); in DACs, the main  
steady-state methods are the optical thermal grating  
method147–149 (Fig. 2b), the thermocouple method150 (Fig. 2c)  
and the Raman-​based opto-​thermal method66,111,151,152 
(Fig. 2d). Transient methods include the transient hot- 
wire method (Fig. 3a) for piston–cylinder cells133,153–162, the 
pulsed heating method for multi-​anvil cells163,164 (Fig. 3b) 
and the TH method17,47,48,165,166 (Fig. 3c; Supplementary 
Fig. 2) and the TDTR method18,35,86,96,167–173 (Fig. 3d; 
Supplementary Fig. 3) for DACs. The optical contact-
less methods of the TH and TDTR techniques make it 
possible to investigate thermal properties at extremely 
high pressures. Here, we describe progress in the TH and 
TDTR techniques. Details of all high-​pressure thermal 
characterization methods mentioned above are provided 
in the Supplementary Information.

TH method in DACs
In 2007, an optical contactless TH method (Fig. 3c; 
Supplementary Fig. 2) was developed in combination 
with the DAC techniques to measure the high-​pressure, 
high-​temperature thermal diffusivity of several minerals 
at pressures and temperatures as high as 125 GPa and 
2,600 K (refs17,47,48,165,166). More recently, this technique 
has been modified to enable measurements of metallic 
samples and to determine the κ of non-​metallic samples 
with greater accuracy174. The TH method is currently one 
of the few methods appropriate for high-​temperature, 
high-​pressure measurements of thermal properties, 
especially for sample temperatures above 1,400 K. This 
method has been used to measure the κ of solid Fe at 
planetary core conditions of ~130 GPa and 3,000 K 
(ref.47) and, later, the κ of solid Fe and Fe–Si alloys up 
to 144 GPa and 3,300 K (ref.48), and the assemblage of 
lower-​mantle minerals crystallized from pyrolite glass at 
temperatures up to 2,500 K at 120 GPa (ref.175).

TDTR method in DACs
TDTR is another contactless optical method that is 
widely applied to measure κ (refs86,167) and ITC96,168 in 
thin films. The TDTR method can provide an accu-
racy of 10–35% (depending on the pressure range) 
and a very fast measurement time. Moreover, the 
technique is readily compatible with DAC opera-
tion because the anvils are transparent for visible and 
near-​infrared lasers that are normally used in TDTR. 
In 2009, the TDTR method was successfully combined 
with the DAC technique (that is, the TDTR-​DAC tech-
nique) (Fig. 3d; Supplementary Fig. 3) to measure the 
pressure-​dependent κ of muscovite mica up to 24 GPa 
(ref.18) and then the pressure evolutions of κ of materi-
als from crystals to amorphous polymers up to 60 GPa. 
Later, to study how the extracted κ is affected by vari-
ations in the thermophysical parameters of metal film 
transducers at high pressures, the pressure evolutions 
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of critical thermal parameters (thermoreflectance, 
piezo-​optical coefficient and physical stability) for sev-
eral metal film transducers (Ta, Al and Au(Pd) thin 
films) were further investigated. The acoustic strengths 
for Ta and Au(Pd) films are essentially independent of 
pressure, whereas they drop abruptly and remain small 
for the commonly used Al film upon initial loading and 
up to 12 GPa (ref.170).

The TDTR-​DAC technique has also been used 
to measure κ in liquids, as pressure-​transmitting 
media such as methanol–ethanol mixture and sili-
cone oil171. Furthermore, the ITC at heterointerfaces 
(such as Al/SiC, Al/graphene/SiOx/SiC, Al/SiOx/SiC) 
as a function of pressure can be extracted using this 
method176. Based on the TDTR-​DAC technique, in 
2019, this method was extended to combine with a 
picosecond-​pulsed-​laser-​based transient thermoreflec-
tance technique to measure the pressure-​dependent 
cross-​plane κ of MoS2 up to 25 GPa (refs35,172). Moreover, 
an in situ method was developed for measuring the 
high-​pressure, high-​temperature thermal diffusivi-
ties of Pt and Fe up to ~60 GPa and 2,000 K, and κ in 
post-​perovskite up to 180 GPa and 1,560 K, by com-
bining the thermoreflectance measurements (albeit 
with nanosecond laser pulses) and laser-​heated DAC 
techniques173,177.

Thermal conductivity under pressure
In terms of the magnitude of κ and functional applica-
tions, we arrange materials into the following groups: 
gases, liquids and solids, the last of which consists of TE 
materials, Earth materials and semiconductor materials. 
We do so because the κ values of these materials are, 
in general, distributed from low to high, spanning over 
almost all known magnitudes of κ.

Gases
We use ‘gas’ to refer to materials that are in the gas phase 
at ambient conditions. In general, the κ values of gases 
under pressure are noticeably smaller than those of sol-
ids. Figure 4a and Table 1 summarize the κ of several 
typical gases with respect to pressure. Around 1 GPa, 
most gases transform into liquids or solids, accompanied 
by a rapid increase in κ.

Limited by experimental techniques, the majority 
of the thermal studies of gases in the last century was 
within the pressure range of 1 GPa (ref.67). For instance, 
κ was measured in hydrogen using a coaxial cylindrical 
cell for pressure up to 66 MPa in 1966, and the effects of 
temperature on the κ of hydrogen under pressure were 
also established178. Furthermore, pressure-​dependent κ 
parameters of oxygen, methane, nitrogen, neon, argon 
and other gases were also investigated, predominantly 
via the transient hot-​wire method179–183.

More recently, with the help of the DAC and TH tech-
niques, the pressure range of thermal characterizations 
of gases has been extended over 10 GPa. In 2012, the κ of 
argon was measured in a pulsed-​laser transiently heated 
DAC at pressures up to 50 GPa and temperatures up to 
2,500 K (ref.184), paving the way for thermal studies of 
gases at higher pressures. For argon, κ at high pressures 
was predicted through first-​principles-​based phonon 
Boltzmann transport equation (BTE), density functional 
theory (DFT) and molecular dynamics methods185,186, 
providing valuable guidance for experimental studies. 
The κ of argon increases rapidly by nearly four orders 
of magnitude when the pressure is increased to about 
50 GPa (Fig. 4a). This trend is caused by argon rapidly 
crystallizing into a pure solid at a pressure of around 
1 GPa; the κ of a crystal, in general, increases with pres-
sure much faster than that of a gas, liquid or amorphous 
material.

Later, via DAC and pulsed-​laser heating techniques, 
a planetary interior condition of about 140–170 GPa and 
4,000 K was obtained. At these conditions, the κ of liquid 
metallic hydrogen, the most abundant material in the 
Solar System, was estimated to be 100–140 Wm−1 K−1, 
based on the calculated electrical conductivity obtained 
from measured optical conductivity data using the 
Wiedemann–Franz law187.

Liquids
Early studies on the κ parameters of liquids under pres-
sure were limited to pressures of approximately 1 GPa 
and focused on organic liquids, such as oil, ethanol and 
toluene, to explore their implications on food and indus-
trial products188–190. There was also interest in the 
pressure-​dependent κ of pressure-​transmitting media 
used in DACs171, such as methanol–ethanol mixture 
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and silicone oil. Measuring these parameters is essen-
tial for the accurate study of many important physical 
parameters, such as κ, of other materials under pressure. 
In addition, H2O was also systematically studied191,192. 
Understanding the fundamental physical properties of 
H2O, especially the κ of the Earth interior’s environment, 
is important in exploring the origins of life. The evolu-
tion of κ of the above-​mentioned liquids with pressure 
is plotted in Fig. 4b and summarized in Table 1, show-
ing typical changes on the orders of 0.1–10 Wm−1 K−1 
within the transformation range from liquids to solids. 
Notably, the κ of H2O (in its ice VII polymorph) appears 
to be an order of magnitude higher than that of silicone 
oil or 4:1 methanol–ethanol mixture at similar pressures 
above 20 GPa (Fig. 4b). This trend mainly arises from the 
fact that the κ of a crystal (such as water ice) typically 
increases rapidly with pressure, following approximately 
a P3/2 dependence, whereas the κ of amorphous materi-
als (such as silicone oil) increases relative slowly with 
pressure, following approximately a P1/2 dependence.

Solids
Pressure dependence of the thermal transport in solids 
and amorphous materials has been studied for approxi-
mately 100 years. Here, based on the magnitude of mate-
rials’ thermal conductivity ranging from low to high and 
the present research focus of materials’ functions, we 

mainly discuss the pressure-​dependent κ of solid mate-
rials in divisions of TE materials, Earth materials and 
semiconductor materials (Figs 4–6; Table 1).

TE materials. TE materials with a high figure of merit 
(zT, which is normally expressed as zT = σS2T/κ, where 
S is the Seebeck coefficient) are an ideal candidate to 
overcome the future energy crisis by transforming waste 
heat into power generation. According to their work-
ing temperatures, TE materials are normally classified 
as Bi2Te3-​based low-​temperature (<400 K), PbTe-​based 
medium-​temperature (600–900 K) and SiGe-​based high-​
temperature (>900 K) divisions. The bottleneck is that 
the zT is still too low to achieve a value >3 for practical 
applications, despite much progress in the existing mod-
ulation methods, such as doping, alloying, temperature 
and nanostructure engineering. As mentioned above, 
pressure tuning can also be a promising and reliable 
approach to modulate the TE properties, by modifying 
physical and chemical properties even at room tem-
perature, including σ and κ, ultimately achieving high 
zT values.

Bi2Te3 is a typical commercial, low-​temperature TE 
material with a best zT value of around 1. When pressur-
ized and electrically heated by contactless chromel wires 
to create temperature drops in a DAC, its κ increases 
from 2.47 Wm−1 K−1 at ambient pressure to ~5.6 Wm−1 K−1 
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Table 1 | Summary of thermal conductivities for various materials from gases, liquids to solids investigated 
under pressure

Materials Strain type Methods Maximum 
pressure

Thermal conductivity 
(Wm−1 K−1)

Ref.

Gases

H2 Comp. – 0.066 GPa 0.19–0.24 (0.00354–0.0656 GPa, 
298 K)

178

H2 Comp. Transient short 
hot-​wire method

0.099 GPa 0.197–0.28 (0.00026–0.09776 GPa, 
323 K)

257

N2 Comp. Transient hot-​wire 
method

0.0277 GPa 0.038–0.046 (0.001–0.0277 GPa, 
470 K)

258

O2 Comp. Transient hot-​wire 
method

0.07 GPa 0.028–0.068 (0.002–0.0653 GPa, 
310 K)

179

Ne Comp. Parallel-​plate method 0.26 GPa 0.05–0.12 (1 atm–0.25 GPa, 298 K) 182

Ar Comp. Transient hot-​wire 
method

0.011 GPa 0.018–0.021 (0.00058–0.00631 GPa, 
308 K)

183

Ar Comp. Parallel-​plate method 0.24 GPa 0.018–0.107 (1 atm–0.196 GPa, 
298 K)

259

Ar Comp. Transient heating 
technique

50 GPa 10.66–78.28 (10–50 GPa, 300 K) 184

Ar Comp. + tension MD + BTE calculations 6% comp. +  
6% tension

0.1–10 (isotropic strains from  
−0.06 to 0.06, 20 K)

260

Ar Comp. MD calculations 50 GPa 0.72–25.93 (0–50 GPa, 293 K) 185

Ar Comp. DFT + BTE calculations 150 GPa 3.32–56.71 (10–90 GPa, 400 K) 186

Methane Comp. Transient hot-​wire 
method

0.07 GPa 0.0337–0.1169 
(0.00099–0.0673 GPa, 295 K)

180

N2 + CO2 Comp. Transient hot-​wire 
method

0.03 GPa Change with proportion 258

Liquids

H2O Comp. Line heat source probe 0.7 GPa 0.65–0.82 (0.108–0.7 GPa, 298 K) 188

H2O Comp. Transient hot-​wire 
method

0.8 GPa 0.56–1.54 (0–0.65 GPa, 273–243 K) 261

H2O Comp. TDTR + DAC 22 GPa 0.54–24.69 (0–22 GPa, 300 K) 191

4:1 Methanol–
ethanol

Comp. TDTR + DAC 23 GPa 0.21–1.98 (0–23 GPa, 300 K) 171

Silicone oil Comp. TDTR + DAC 23 GPa 0.16–1.53 (0–23 GPa, 300 K) 171

Toluene Comp. ac-Heated-wire method 1 GPa 0.128–0.25 (0–0.9026 GPa, 300 K) 189

Thermoelectric materials

Bi2Te3 Comp. Electrical heating 10 GPa 2.47–5.6 (0–10 GPa, 300 K) 193

Sb2Te3 Comp. Electrical heating 10 GPa 1.22–3 (0–10 GPa, 300 K) 193

PbTe Comp. Electrical heating 11 GPa 2–4 (0–11 GPa, 300 K) 195

PdS Comp. Opto-​thermal Raman 10 GPa 25–9 (0–10 GPa, 300 K) 152

Pb0.99Cr0.01Se Comp. Opto-​thermal Raman 6 GPa 2.1–8.2 (0–6 GPa, 300 K) 66

CuInTe2 Comp. BTE calculations 5 GPa 7.5–4.1 (0–5 GPa, 300 K) 262

CuInTe2 Comp. Opto-​thermal Raman 8 GPa 2.1–8.2 (0–8 GPa, 300 K) 111

Earth materials

Iron Comp. TDTR + DAC 120 GPa 76–120 (0–120 GPa, 300 K) 48

Iron Comp. TH + DAC 130 GPa 20–40 (35–130 GPa, 2,000–3,000 K) 47

Iron (hexagonal 
close-​packed)

Comp. TH + DAC 134 GPa 70–80 (constant above 46 GPa) 113

Iron Comp. DFT calculations 340 GPa 150–250 (120–340 GPa, 
4,500–6,500 K)

205

Fe0.96Si0.04 Comp. TDTR + DAC 125 GPa 16.5–60 (0–125 GPa, 300–3300 K) 48
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at 10 GPa (Fig. 4c). However, its zT value decreases dras-
tically at pressures above 3 GPa (ref.193). First-​principles 
calculations indicate that the κ of Bi2Te3 reduces by 50% 
when under a 6% tensile strain and increases by 61% 
under a 4% compressive strain194. Using the same exper-
imental high-​pressure thermal characterization method 
as that in Bi2Te3, the κ of another commonly studied 
low-​temperature TE material, Sb2Te3, was reported to 
increase from 1.22 Wm−1 K−1 to ~3 Wm−1 K−1 at ~10 GPa 
(Fig. 4c). By contrast, a nearly pressure-​independent zT 
value was reported in Sb2Te3 (ref.193).

Among the medium-temperature TE materials, the  
pressure dependence of κ was measured through  
the DAC combined Raman opto-​thermal method in a 

pressurized TE material of CuInTe2 (ref.111). κ reduces 
from 11.7 Wm−1 K−1 to a minimum of 4.1 Wm−1 K−1 at 
2.2 GPa. At pressures above 6 GPa, at which the mate-
rial undergoes a transition into a new phase, κ jumps 
to ~30 Wm−1 K−1 and keeps increasing to ~40 Wm−1 K−1 
at 7.9 GPa, where all the Raman modes almost vanish 
(Fig. 4d). Pressure-​induced phonon anharmonicity and 
phonon softening are thought as the main mechanisms 
for such a reduction of κ under pressure. It is interest-
ing that the κ of another TE material, PdS, continu-
ously decreases from ~25 Wm−1 K−1 at ambient pressure 
to ~9 Wm−1 K−1 near 4 GPa and then saturates until 
~11 GPa (ref.152) (Fig. 4d). A continuous decrease of κ is 
also witnessed in a half-​Heusler TE material FeNbSb, in 

Materials Strain type Methods Maximum 
pressure

Thermal conductivity 
(Wm−1 K−1)

Ref.

Earth materials (cont.)

Fe0.85Si0.15 Comp. TDTR + DAC 144 GPa 11.5–40 (0–144 GPa, 300–3,300 K) 48

MgO Comp. TDTR + DAC 60 GPa 53–161 (0–60 GPa, 300 K) 218

MgO Comp. DFT + PBTE 
calculations

150 GPa 66–341 (0–150 GPa, 300 K); 2–46 
(0–150 GPa, 3,000 K)

212

(Mg, Fe)O Comp. TDTR + DAC 120 GPa 2.8–50 (0–120 GPa, 300 K) 221

MgSiO3 Comp. TDTR (two 
sided) + DAC

144 GPa 8–37.1 (11–144 GPa, 300 K) 229

(Mg, Fe)SiO3 Comp. TDTR + DAC 120 GPa 5–30 (0–120 GPa, 300 K) 222

(Mg, Fe)O;  
(Mg, Fe)SiO3

Comp. TH + DAC 133 GPa 6–11 (0–133 GPa, 300–2,800 K) 165

Ringwoodite Comp. TDTR + DAC 25 GPa 3–16 (0–25 GPa, 300 K) 228

(Mg, Fe)CO3 Comp. TDTR + DAC 67 GPa 2.5–45 (0–67 GPa, 300 K) 223

Pyrolite Comp. TH + DAC 124 GPa 3.9 (0–80 GPa, 2,000–2,500 K); 5.9 
(0–124 GPa, 2,000–3,000 K)

175

Muscovite Comp. TDTR + DAC 24 GPa 0.46–6.6 (0–24 GPa, 300 K) 18

δ-(Al,Fe)OOH Comp. TDTR + DAC 110 GPa 5–60 (0–110 GPa, 300 K) 224

Semiconductor materials

Si Torsion TDTR + DAC 24 GPa 142–7.6 (0–24 GPa, 300 K) 263

Si Comp. TDTR + DAC 45 GPa 73–300 (0–36 GPa) 239

Si Comp. + tension MD + BTE calculations 3% comp. +  
3% tension

135–155 (isotropic strains from 
−0.03 to 0.03, 300 K)

260

Si Comp. + tension MD calculations 4% comp. +  
4% tension

100–450 (Stillinger–Weber Si 
potentials, 300 K)

264

Si0.991Ge0.009 Comp. TDTR + DAC 45 GPa 24–360 (0–36 GPa) 239

CuCl Comp. Transient hot-​wire 
method

2.7 GPa 0.8–0.6 (0.5–2.7 GPa, 295 K) 241

GaAs Comp. DFT + BTE calculations 20 GPa 49–70 (0–16 GPa, 300 K) 110

BAs Comp. DFT + BTE calculations 80 GPa 1331–823 (0–80 GPa, 300 K) 65

MoS2 Comp. ps-​TTR + DAC 19 GPa 3.5–25 (0–19 GPa, 300 K) 35

Monolayer 
silicene

Comp. DFT + BTE calculations 10% 25–170 (0–10% strain, 300 K) 265

Monolayer h-​BAs Tension MD calculations 3–7% 180.2–375 (3% strain along 
armchair direction); 180.2–406.2 
(3% strain along zigzag direction)

251

BTE, Boltzmann transport equation; Comp., compression; DAC, diamond anvil cell; DFT, density functional theory; MD, molecular 
dynamics; PBTE, Peierls–Boltzmann transport equation; TDTR, time-​domain thermoreflectance; TH, pulsed-​laser transient heating; 
TTR, transient thermoreflectance.

Table 1 (cont.) | Summary of thermal conductivities for various materials from gases, liquids to solids 
investigated under pressure
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which κ decreases from ~5 Wm−1 K−1 at ambient pres-
sure to ~2 Wm−1 K−1 at 18 GPa (ref.151). An enhanced 
room-​temperature zT value of ~1.7 (~4 times enhance-
ment) was reported at ~2.8 GPa in a Cr-​doped PbSe; this 
enhancement was ascribed to a pressure-​driven topolog-
ical phase transition at 2.6 GPa (ref.66). In this work, via 
a similar Raman opto-​thermal method, an increase of κ 
from ~2 Wm−1 K−1 at ambient conditions to ~6 Wm−1 K−1 
at 4.8 GPa was observed, followed by an immediate jump 
to a larger value of ~8 Wm−1 K−1 due to the transition into 
a Pnma phase (Fig. 4c). For comparison, the high-​pressure 
TE performance was also reported in its counterpart TE 
material of PbTe. Unlike that of Cr-​doped PbSe, the κ of 
PbTe increases from 2 Wm−1 K−1 to ~4 Wm−1 K−1 within 
11 GPa (refs195–197) (Fig. 4c). Moreover, in another two 
typical medium-​temperature TE materials, skutter-
udites CoSb3 and IrSb3, similar calculations to those 
used for Bi2Te3 show that the κ values of both exhibit an 
approximate parabolic trend with respect to pressure at 
the same temperature198. CoSb3 has an increased κ from 

~11.3 Wm−1 K−1 at ambient conditions to ~13.3 Wm−1 K−1 
at 58 GPa with the maximum zT value, despite the larg-
est κ of ~18.6 Wm−1 K−1 appearing at ~30 GPa. However, 
IrSb3 shows a decreased κ from ~14.2 Wm−1 K−1 at 
ambient conditions to ~8.8 Wm−1 K−1 at 54 GPa with 
the maximum zT value, but having the largest value of 
~25.4 Wm−1 K−1 at ~20 GPa.

Earth materials. Understanding the heat transport and 
thermal evolution of the Earth’s interior requires knowl-
edge of the thermal-​physical properties of minerals and 
melts at relevant extreme temperatures and pressures. 
Several decades ago, there were a number of limita-
tions on the direct measurements of thermal-​physical 
parameters. To address this problem, pressure depen
dence of the Grüneisen parameter is commonly used 
to investigate the geophysics, as it reflects the measured 
changes in temperature associated with adiabatic com-
pression. The Grüneisen parameter is, therefore, impor-
tant in the calculation of Earth’s adiabatic gradient to 
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understand the core convection and the Earth’s geomag-
netic field199–204. A large Grüneisen parameter normally 
indicates low κ, but this relationship is hard to be quan-
titatively and accurately correlated, especially at high  
temperature.

Developments in DAC techniques enable the κ of 
materials to be measured at high pressure and temper-
ature. In the Earth’s core, the κ values of core materials 
in high-​pressure, high-​temperature conditions directly 
determine the adiabatic heat flux, thermal and compo-
sitional energy that support the operation of the Earth’s 
magnetic field. Meanwhile, κ of the Earth’s lower-​mantle 
minerals impacts mantle convection and affects the heat 
conduction from the core to the mantle. Conduction is 
the major heat transfer mechanism at the core–mantle 
boundary (CMB) and the magnitude of heat flux trans-
fers from the core is determined by κ of the bottom 
boundary layer of the mantle. More importantly, this κ 
value of the bottom mantle boundary layer is intimately 
related to the instability of the boundary layer, the for-
mation of mantle plumes, the long-​term thermal evo-
lution of both the mantle and the core, and the driving 
force for the generation of the geomagnetic field.

The Earth’s core is composed of iron alloyed with some 
light elements. Iron is a major constituent of the Earth’s 
core, thus, the κ of Fe and its alloys have been theor
etically predicted at core conditions205. Experimentally, 
the κ of solid Fe, which is 18–44 Wm−1 K−1 at pressures 
(130 GPa) and temperatures (3,000 K) of the core, was 
directly measured using a dynamically double-​sided, 
infrared, continuous-​wave, laser-​heated DAC with 
one-​side additional thermal disturbance created by 
another infrared pulsed laser47,174,206. At pressures and 
temperatures close to the outer core conditions, that is, 
105 GPa and 3,300 K, the κ for solid Fe and liquid Fe was 
measured to be 46 ± 14 Wm−1 K−1 and 42 ± 12 Wm−1 K−1, 
respectively. These κ values were extracted from the 
resistivity values via the Wiedemann–Franz law using an 
ambient Lorenz number207. More recently, an increased 
κ of γ-Fe (90–125 Wm−1 K−1) and a mixed phase of Fe  
(45–65 Wm−1 K−1) with increasing pressure up to ~46 GPa 
was measured through a single-​sided, laser-​heated 
DAC technique, where the power absorbed by an Fe 
metal foil was calculated from a thermodynamic simu
lation in COMSOL113. For ε-​Fe, κ is 70–80 Wm−1 K−1 at 
1,600–2,100 K (with an error of ~40%) and is almost  
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independent of pressure up to 134 GPa; this pressure- 
independent κ of ε-​Fe was attributed to the strong  
electronic correlation effects driven by the electronic  
topological transition113.

The high-pressure κ values of solid Fe and Fe–Si alloys 
have been measured at both room temperature and high 
temperature up to 144 GPa and 3,300 K by the combina-
tion of TDTR18 and TH methods17,47. At room temper-
ature, the κ of solid Fe increases from ~76 Wm−1 K−1 to 
~90 Wm−1 K−1 at ~13 GPa and then decreases to a mini-
mum of ~40 Wm−1 K−1 at ~40 GPa, followed by a further 
increase again, reaching ~130 Wm−1 K−1 when the pressure 
is near the CMB condition (120 GPa); this minimum may 
be due to an electronic topological transition occurring 
at ~40 GPa (ref.48). The addition of Si impurities signifi-
cantly lowers the κ of pure Fe. For example, at ambient 
conditions, Fe0.96Si0.04 has κ = 16.5 Wm−1 K−1 and Fe0.85Si0.15 
has κ = 11.5 Wm−1 K−1. With increasing pressure, the κ 
values of both Fe0.96Si0.04 and Fe0.85Si0.15 increase mono-
tonically up to 40 GPa and then saturate at ~40 Wm−1 K−1 
and 19 Wm−1 K−1, respectively (Fig.  5a). However, at 
temperatures of ~3,300 K, the κ of Fe0.85Si0.15 first 
increases to ~40 Wm−1 K−1 (80 GPa) and then decreases 
to ~20 Wm−1 K−1 (144 GPa), whereas the κ of Fe0.96Si0.04 
increases to ~60 Wm−1 K−1 (125 GPa)48 (Fig. 5b). All of these 
κ values measured by experimental methods are several 
times lower than those obtained by calculations and  
electrical resistivity measurements205,208–211.

MgO is recognized as a typical mineral of lower-​mantle 
materials. The κ of MgO has been calculated through 
a numerical technique that combines DFT and the 
Peierls–BTE method, providing a model for the pres-
sure–temperature dependence of the κ of MgO at con-
ditions from ambient to the CMB212,213. κ increases from 
15–20 Wm−1 K−1 at 24 GPa (the pressure of the 670-​km 
seismic discontinuity) to 40–50 Wm−1 K−1 at 135 GPa (the 
CMB pressure). Furthermore, at 2,000 K, the κ of MgO 
measured via the TH technique was found to have ~50% 
enhancement when increasing the pressure from ambient 
conditions to 32 GPa. In addition, the radiative part of κ 
of the lower mantle increases with depth until saturat-
ing at ~0.54 Wm−1 K−1 at the depth of the CMB17,165,214–217. 
However, at 300 K, through TDTR measurements 
in DACs, the κ of MgO was found to increase from 
50 Wm−1 K−1 at ambient conditions to about 160 Wm−1 K−1 
at 60 GPa (ref.218) (Fig.  5c), agreeing well with the  
previous model and first-​principles predictions212,219,220.

Concerning other Earth minerals, recent investi-
gations on the pressure dependences of the κ of other 
lower-​mantle minerals include (Mg,Fe)O (ref.221) 
(Fe,Mg)SiO3 (ref.222), (Fe0.78Mg0.22)CO3 (ref.223), δ-(Al,Fe)
OOH (ref.224), Mg0.94Fe0.06SiO3 (ref.225), (Mg0.9Fe0.1)O  
(ref. 225) ,  Mg(OH) 2 (ref. 226) ,  CaGeO 3 (ref. 140) , 
(Mg0.9Fe0.1)2SiO4 (ref.68), olivine (Mg0.9Fe0.1)2SiO4 (ref.227) 
and ringwoodite228. Among them, thermal anomalies 
were found in an important water-​carrying mineral, 
δ-(Al,Fe)OOH, of which the κ varies 2–3-​fold upon 
compression across the spin transition of iron, thus, 
leading to an abnormally low κ value at the lowermost 
pressure of the mantle224. Similar anomalous κ depen
dence was also observed in the mineral of (Fe0.78Mg0.22)
CO3 when pressurized across the spin transition223.

As an important mineral in Earth’s lower mantle near 
the CMB, MgSiO3 has κ ~37.1 Wm−1 K−1 at 144 GPa, 
nearly six times higher than that at ambient condi-
tions, as measured by a modified TDTR technique in 
which the pump and probe lasers illuminate the oppo-
site sides of the sample of the DAC229 (Fig. 5d). Through 
non-​equilibrium molecular dynamics simulations, 
the κ values of MgSiO3 at 1,000 K show enhancements 
from 8.5 Wm−1 K−1 to 14–20 Wm−1 K−1 in the range of 
20–130 GPa with an obvious anisotropy. Note  that 
these recently measured and calculated values are 
within the range of previous estimates of κ values at the  
CMB (4–29 Wm−1 K−1)175,221,222,229–238.

Semiconductor materials. Enhancing the κ of semicon-
ductor materials is a key for better thermal dissipation 
and thermal management in devices. To date, the major-
ity of works on the pressure dependence of κ in semi
conductor materials are first-​principles calculations. 
For example, by separately calculating the harmonic and 
anharmonic effects of strain on materials stiffness 
and phonon properties, the κ of the widely used Si is 
found to be constant within a 3% compression (equiva-
lent to ~4 GPa) and has only about a 10% decrease when 
it is under a 3% tension; this weak strain dependence was 
mainly ascribed to the anomalous increase of the phonon 
lifetime with the strain when moving from compression 
to tension and the greater root-​mean-​square displace-
ment allowed under compression. Experimentally,  
a κ of Si without obvious pressure dependence within 
the entire cubic phase range of 0–13 GPa was meas-
ured via TDTR, whereas a continuously increased κ to 
~300 Wm−1 K−1 was witnessed within the metallic phase 
in the range of 16–36 GPa (ref.239) (Fig. 6a). Meanwhile, 
the κ of Si0.991Ge0.009 increases with pressure in both the 
semiconducting phase and the metallic phase, but exhib-
its a jump between the cubic phase and the primitive 
hexagonal phase at ~13 GPa and a sharp drop between 
the primitive hexagonal phase and  the hexagonal 
close-packed phase at ~36 GPa (ref.239).

Diamond has the natural highest κ among the known 
semiconductors, making it valuable as an ultrawide- 
bandgap semiconductor. A dramatically increased κ of 
~12,000 Wm−1 K−1 for natural diamond (~17,000 Wm−1 K−1 
for isotope-​pure diamond) at room temperature and 
400 GPa was predicted using density functional pertur-
bation theory combined with the phonon Boltzmann 
equation240. The pressure-induced enhancement of the 
frequency scale results in the relatively high acoustic 
velocities and low phonon–phonon scattering rates. These 
are regarded as the primary mechanism for the enhanced 
κ upon compression. Within this framework, the increase 
of the optical mode frequencies with pressure weakens the 
acoustic–optical coupling, thus, driving the κ of diamond 
to extremely high values240.

Anomalous pressure dependences of κ were reported 
in some compound semiconductors, especially those of 
large mass ratio. For example, using a transient hot-​wire 
technique, the κ of the wide-​bandgap semiconductor 
CuCl was experimentally measured to decrease contin-
uously from 0.5 to 2.7 GPa and from 100 to 480 K (ref.241) 
(Fig. 6b). This typical decrease in κ with increasing pressure 
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was found to correlate with large and negative Grüneisen 
parameters (∼2.5) for the transverse-acoustic phonons.  
It is also found that the atomic mass ratio of CuCl is as large 
as 1.8, resulting in the optic and acoustic modes being  
well separated241–243. In addition, the pressure dependence 
of κ of several binary compounds with various mass ratios 
has been examined using a first-​principles approach63. 
The calculations revealed that those compounds with 
similar mass ratio, such as GaAs, SiC, BN and BP, show 
an increased κ with pressure, whereas compounds with 
large mass ratio (such as BSb, BAs, BeTe and BeSe) that 
have significant frequency gaps between the acoustic and 
optical phonons exhibit a decreasing κ with pressure63 
(Fig. 6c). These anomalous pressure dependences were 
found to arise from the fundamentally different scattering 
processes of acoustic phonons.

Future developments of electronics require significant 
shrinking of semiconductors, especially in their thick-
ness. Beyond meeting the needs of advanced technolo-
gies and new device layouts, the naturally ultrathin and 
uniform 2D semiconducting materials also demonstrate 
potential for applications in next-​generation nanoelec-
tronics. These materials normally possess highly aniso-
tropic κ along the in-​plane and cross-​plane directions 
due to their weak interlayer bonding by van der Waals 
forces. For example, the reported in-​plane κ (κ∥, rang-
ing from 35 to 85 Wm−1 K−1 at ambient conditions) of 
MoS2 (refs244–246), an archetypal transition metal dichal-
cogenide (TMD) with a layered crystal structure, is more 
than ten times larger than the cross-​plane κ (κ⊥ ~2–4.
5 Wm−1 K−1)244,247,248. Small κ⊥ could jeopardize heat dis-
sipation of TMD-​based electronics. Strain engineering 
and pressure engineering are promising to enhance and 
modulate κ⊥, which can also revolutionize the thermal 
management techniques in all TMD-​based electronic 
devices. Despite extensive theoretical studies of the effect 
of strain on κ in TMDs, no consistent conclusions have 
been drawn61,69,249,250. In bulk MoS2, κ⊥ increases from 
3.5 Wm−1 K−1 at ambient conditions to ~25 Wm−1 K−1 
at ~25 GPa, as observed using a picosecond transient 
thermoreflectance technique35 (Fig. 6d). Combined with 
coherent phonon spectroscopy and first-​principles 
calculations, it was further revealed that the notable 
enhancement in κ⊥ arises from the strain-​enhanced 
interlayer interaction, heavily modifying the phonon 
dispersion curves and decreasing the phonon lifetime. 
Note that an abnormal strain dependence has been 
shown in a hexagonal phase monolayer BAs system. 
Through DFT–BTE calculations, the κ∥ was predicted to 
be enhanced from 180.2 Wm−1 K−1 to 375.0 Wm−1 K−1 and 
406.2 Wm−1 K−1 along the armchair and zigzag directions, 
respectively, under only 3% stretching251. This enhance-
ment is correlated to the fact that stretching makes the 
flexural out-​of-​plane mode the dominant heat carrier.

DAC simulations of materials in the Earth’s interior
The Earth’s core is under extreme conditions, with tem-
perature ~6,000 K and pressure over 360 GPa at its centre. 
Laser-heated DAC techniques provide the necessary and 
effective approaches for studying the Earth’s interior by 
providing the relevant pressure–temperature conditions. 
A variety of in situ probes coupled to DACs, such as  

X-ray diffraction, X-​ray absorption and Raman spectro
scopy, TH and TDTR252–254, enable multiple experiments 
on geological materials, such as the core and the mantle 
minerals, to study their physical and chemical proper-
ties, thereby, contributing to understanding of the Earth’s 
interior structure, composition and evolution.

Understanding heat transport is crucial to clar-
ify the thermal evolution and dynamics of the Earth’s 
interior. A wealth of exploratory works have been 
reported on the κ of materials present in the Earth’s 
core, mantle and CMB, through DAC experiments 
at the high-​pressure, high-​temperature conditions of 
Earth and first-​principles calculations47,166,175,205,208,211,225. 
Computing the thermal and electrical conductivity 
in liquid mixtures at the Earth’s core conditions using 
first-​principles calculations gives the adiabatic heat 
flux at the CMB of 8–16 TW. This value is higher than 
previous estimates, which are based on the mantle 
convection205,255,256. Experimentally, the κ of iron–silicon 
alloys at the Earth’s core conditions was measured to be 
as low as 20 Wm−1 K−1 through TDTR and TH exper-
iments in DACs, suggesting a minimum heat flow of 
about 3 TW actually across the CMB, lower than pre-
viously expected48. In addition, the κ of solid iron at the 
Earth’s core conditions was measured using laser-​heated 
DACs to be 18–44 Wm−1 K−1; these values are near the 
low end of previous estimates and are in agreement with 
palaeomagnetic measurements, indicating that the solid 
inner core has persisted since the beginning of Earth’s 
history and is as old as the dynamo47. Moreover, the κ of 
mantle minerals measured in a DAC near the conditions 
of the lowermost mantle gave a value of ~3.9 Wm−1 K−1 at 
80 GPa and 2,000–2,500 K, and ~5.9 Wm−1 K−1 at 124 GPa 
and 2,000–3,000 K (ref.175). These results further indicate 
that high-​pressure, high-​temperature experiments and 
simulations of Earth materials are important in the 
exploration of Earth’s geodynamo and the understanding 
of Earth’s evolution.

Outlook
To date, one of the greatest challenges for characteriz-
ing κ under pressure is that the samples loaded in the 
high-​pressure apparatus are normally very small. For 
example, in the contact method using thermocouples 
and heaters, the sample size needs to be larger than the 
thermocouple, pushing the limited space within 
the DAC. Similarly, in contactless methods that use 
optics, the sample size needs to be larger than the spot 
radius of the pump laser used in TDTR and TH methods 
or the excitation laser used in the Raman opto-​thermal 
method. In addition, optical methods require the sam-
ples’ surfaces to be as smooth as possible, otherwise the 
optical signal would be degraded by scattering. Another 
challenge is the measurement of the in-​plane κ under 
pressure or the anisotropic evolution of κ under pres-
sure. Despite many studies on the pressure-​dependent 
κ, the outcomes are either isotropic or cross-​plane κ, 
whereas high-​pressure measurements on the in-​plane 
κ of anisotropic materials are yet to be achieved. The 
in-​plane κ has broad theoretical use and practical appli-
cations in many anisotropic materials, such as 2D mate-
rials and ultrathin films that are needed for lateral heat 
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spreading in electronics. Significant interest would be 
further raised if in-​plane κ modulation can be defini-
tively realized and theoretically understood through 
methods of the strain modulation.

Furthermore, κ modulation via strain may steer 
new directions in the development of electronics and 
devices for thermal management. Especially, but not 
limited to electronic systems, the intensity of heat 
density generation and the associated heat dissipation 
need to be fully understood and carefully conducted 
away, else the electronics will face significant temper-
ature rise, leading to reliability challenges and possible 
failures. Take as an example transistors, at the heart of 
the electronics industry. The tendency described by 
Moore’s law is related to successive shrinking of the 
device size to integrate a greater number of transistors 
onto a more compact chip, thus, leading to dramatic 
power consumption increase in the integrated circuits; 
this brings about a huge challenge in heat dissipation 
to ensure the device’s high performance and reliability. 
For instance, the heat flux generated at the local hot-
spot due to self-​heating during the operation can exceed 
1,000 W cm−2 in high-​electron-​mobility transistors; this 
heat flux is a threat for device reliability and lifetime. 
From the viewpoint of thermal management, the total 
thermal resistance of devices needs to be minimized. 
This thermal resistance consists of the contributions 
from the κ and the thickness of materials, as well as the 
major hindrances of ITC. It should be noted that, in 
high-​power transistors, we expect larger κ, whereas 

in thermoelectrics, lower κ values are desired. These 
contradictory details should be considered in thermal 
management design, and it is necessary to carefully con-
sider the device purposes and requirements. In any case, 
both types of device applications would benefit from 
higher ITC to quickly and efficiently conduct heat across 
interfaces. Currently, enhancing the κ and the ITC of 
materials is achieved mainly by improving the materials 
quality with fewer defects and less grain boundary scat-
tering, introducing high κ interfacial materials or fabri-
cating smoother interfaces. Besides the above ambient 
methods, strain or pressure can also be used to enhance 
the κ of materials and the ITC at interfaces, although this 
research is still in early stages due to the challenges of 
high-​pressure thermal characterization techniques; how-
ever, this method may inform new thermal management 
techniques in electronic devices.

An additional viewpoint worth noting is that improv-
ing the reliability and precision in determining the 
pressure-​dependent thermophysical properties requires 
further implementation of advanced characterization 
techniques. Currently, defying the small size and very 
narrow space of DAC tools, all-​optical fast laser ther-
moreflectance, transient heating and opto-​thermal con-
tactless experimental techniques have attracted more 
and more interest, and displayed great potential in future 
developments, although there are still many unknowns 
that need to be explored and improved in these methods.
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