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Abstract. Anisotropic superexchange interaction is one of the most important interactions in realizing
exotic quantum magnetism, which is traditionally regarded to originate from magnetic ions and has no
relation with the nonmagnetic ions. In our work, by studying a multi-orbital Hubbard model with spin-
orbit coupling on both magnetic cations and nonmagnetic anions, we analytically demonstrate that the
spin-orbit coupling on nonmagnetic anions alone can induce antisymmetric Dzyaloshinskii-Moriya interac-
tion, symmetric anisotropic exchange and single ion anisotropy on the magnetic ions and thus it actually
contributes to anisotropic superexchange on an equal footing as that of magnetic ions. Our results promise
one more route to realize versatile exotic phases in condensed matter systems, long-range orders in low
dimensional materials and switchable single molecule magnetic devices for recording and manipulating

quantum information through nonmagnetic anions.

1 Introduction

Locking electron spin and momentum together, the rela-
tivistic spin-orbit coupling (SOC) plays a critical role in
realizing a diversity of exotic phases in condensed matter
systems, such as quantum spin liquid, spin-orbit coupled
Mott insulator, Weyl semimetal and topological insulator
[1-3]. In the absence of SOC, the magnetic interaction is
isotropic with spin rotational invariance. However, SOC
may lower the symmetry and lead to anisotropic interac-
tions, which has been microscopically identified by Moriya
by means of extending the Kramers-Anderson superex-
change theory [4-7]. Importantly, the magnetic anisotropy
is the key in bond-dependent Kitaev interaction and phase
transition in low dimensional (D < 2) systems, which has
been argued to be a great promise for quantum com-
putation and information processing in addition to the
fundamental interest [8-10].

Recently, magnetic orders induced by magnetic aniso-
tropy have been reported in experiments on some two-
dimensional (2D) materials or proposed by numerical
simulations [11-16]. Since it is well known that the
Hohenberg-Mermin-Wagner theorem forbids the sponta-
neous breaking of continuous symmetry at finite temper-
ature in low dimensional systems [17], these findings are
thus attributed to magnetic anisotropy in the materials.
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Commonly, the magnetic anisotropy is believed to dom-
inantly result from the SOC on magnetic ions. Never-
theless, intuitively, the SOC on the nonmagnetic anions
should also induce spin flip in the virtual hopping pro-
cess of superexchange. Indeed, in ferromagnetic Crl3 and
CrGeTes monolayers, anisotropic exchange coupling and
single ion anistropy are found to be dominated by the
SOC from the nonmagnetic 5p Iodine or Tellurium anions
rather than the magnetic 3d Cr ions [14,15]. Although
evidences have been provided numerically by comparing
the relevant magnetic couplings with and without SOC
[14,15], from the theoretical point of view, an insight into
the microscopic mechanism to understand how the SOC
on nonmagnetic ions induces the magnetic anisotropic
superexchange on magnetic ions is of both importance
and interest [3,10,18]. Actually, some relavent studies have
been started since 1980s, which focuse on the RKKY inter-
action via the conduction electron with spin-orbit coupling
[19,20].

In this paper, we consider a general system in which
magnetic ions interact through the superexchange via
nonmagnetic ions with SOC on the latter. Starting from
a multi-orbital model with orbital hybridization, onsite
Coulomb interaction and SOC on both magnetic cations
and nonmagetic anions, we first transform this model into
a multiorbital model with both spin-isotropic and spin-
anisotropic electron hopping integrals between magnetic
and nonmagnetic ions. Next, applying the degenerate
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Fig. 1. Superexchange between two magnetic ions via a non-
magnetic ligand with spin-orbit interaction. Apart from the
crystalline electric field splitting, the SOC on the nonmagnetic
ligands could further split the energy levels in two fine struc-
tures with the spin moment parallel and anti-parallel to the
orbital moment, respectively. The SOC on ligands could induce
spin flip in the virtual hopping process of superexchange.

perturbation theory, we obtain the isotropic exchange,
aniso-tropic exchange or pseudodipolar interaction, anti-
symmetric Dzya-loshinskii-Moriya (DM) interaction and
single-ion anisotropy on magnetic ions. We show that
the SOC on nonmagnetic ions contributes to magnetic
anisotropy in a similar way as that on the magnetic ions.
Moreover, the anisotropic magnetic couplings increase
sharply with the atomic number. Therefore, the heavy
nonmagnetic ligands may contribute dominantly to the
magnetic anisotropy rather than the light magnetic ions.

2 Microscopic Hamiltonian

We model a general system containing magnetic cations
M surrounded by nonmagnetic anions or ligands NM, as
shown in Figure 1. The central interactions include the
spin-orbit angular momentum coupling L - s on both M
and NM ions, and the onsite Coulomb interaction Uy and
U, between electrons on the M and NM ions, respectively.
The perturbation term is assumed to be the electron trans-
fer integral ¢;,,,k, between the mth orbital of M ion at site
i and the nth orbitals of the ligand NM at site k. We
neglect the direct hopping between M sites. Then, the
Hamiltonian can be written as

H = Hq+ Hp + Hpa, (1)

where
He—pa=Heo + 9 Z UemanpMeimaTcing, (2)

imna
de = Z (timkndgmapkn(x =+ H-C~> ) (3)
ikmna
with
Z E'rcnoz nﬁczmacmﬂ’ (4)
iman

zja,nﬁ - Ecmoamnéaﬁ + )\c <lcma |Lci . S‘ lcnﬂ> 5 (5)
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where dzma is the creation operator of an electron with
spin « on the mth orbital of ith M ion, and 4,0 is the
energy of the mth orbital. We assume that the crystalline

electric field effect has been taken into account by lifting

the degeneracy of the orbital energy levels. p}ina is the
creation operator of an electron on the mth orbital with
spin a. ng and n,, are the particle number operators of the
electrons on M and NM sites, respectively. L and s denote
the orbital and spin angular momenta. Ay and A, are the
spin-orbit coupling constants on the M and NM ions.

It is easy to diagonalize the single-site Hamiltonian
matrix E firstly [9,21]. In general, we have a site-
dependent diagonal eigenvalue matrix ;. = W By
with the unitary eigenvector matrix W¢. Choosing real
orbital wave functions, then the L. matrix elements are
purely imaginary. €.; has [, eigenvalues with the orbital
angular momentum quantum number [. and every single-
particle energy of €.; has at least a twofold degeneracy due
to time reversal symmetry, characterized by pseudospin
quantum numbers, +1/2. Consequently, a new set of elec-
tron creation and annihilation operators is introduced for
p and d electron operators

Qkna = Z
8

no lﬁpklﬂ7 Aima = Z a ngdlnﬁ (6)

npB

Let’s express the microscopic Hamiltonian in terms of
Qema and Gima as

Hp: § EpknNgkna

kna

1 k
+§ Z prphglq—rv%iqu}chaqlilTriv, (7)
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the spin-isotropic hopping matrix elements

D

oc'ym n’

di kT
Wma m’y 1m’kn/Wn 'y,na

(10)

zmkn =
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and the spin-anisotropic matrix elements

1 .
Cimkn = 5 Z Wrcrlfa,m/'ytim/kn,W’S/k')‘/r,nﬁaaﬂv (11)

afym/n’

where o is the vector of the three Pauli matrix. Clearly,
if we ignore the SOC on nonmagnetic anions, namely, set-
ting WP* a unit matrix, Moriya’s result is reproduced
[4,9,21]. On the other hand, ignoring the SOC on the
magnetic cations, i.e. setting W% a unit matrix, we
still reach a similar result. Formally, the SOC on non-
magnetic ions contributes to both the spin-isotropic and
spin-anisotropic hopping matrix elements in a similar way
to that on the magnetic ions. In the weak SOC limit, the
spin-anisotropic hopping matrix elements are in the lin-
ear order of A./Ae.|c=pq With the energy difference Ae,
between the ground state and the excited state.

3 Superexchange interaction

For magnetic materials, it is often assumed that localized
electrons yield both orbital and spin magnetic moments
on each ions or part of ions. The direction of a magnetic
moment is described by a classical unit vector. It is natu-
ral to define an effective spin to match up with the local
magnetization. Here, we define effective spin operators in

terms of the creation a;fm and annihilation a;,, operators
as
1 i
Si = 5 Z A0 T aBbim3- (12)
afm

Due to the time-reversal symmetry, the fully occupied
pseudospin levels give no contribution to magnetization.
Therefore, the magnetization is dominated by the half-
occupied effective spin levels. Moreover, on magnetic
atoms, the electron kinetic energy or H,q is often weak
enough to be regarded as perturbation, and then the
generalized Hubbard Hamiltonian H in equation (1) is
reduced to an effective spin interaction Hamiltonian of
magnetic ions, mediated by the nonmagnetic ions. To
obtain the spin interaction between magnetic ions M, it is
customary to appeal to the degenerate perturbation the-
ory by taking the hybridization Hp,q or hopping as the
perturbation. We consider the case that the hopping is
much less than onsite Coulomb interactions U, 4 and the
charge transfer energy between NM and M ions. A com-
mon way is to use the limit Uy — oo to forbid double
occupancy in the magnetic atom orbitals. According to
Goodenough-Kanamori rule, half-occupied orbitals dom-
inate the exchange coupling and fully occupied orbitals’
contribution is much weaker [6,7]. We define a projection

operator Pg, which projects onto the subspace with only
single electron locating on each pseudospin levels of mag-
netic ions, and another projector P=1- Pg with the
unit operator I. We take the hopping term Hpq as the
perturbation to derive an effective Hamiltonian [21,22].
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The nth order perturbation reads,
1 n—1
H™ = P,H,y | =—————P.H, P, (13
g pd(E(Hd+Hp) Pd) g» ( )

with the ground state energy F. One finds the first and the
third order perturbations vanish because odd-order hops
introduce double or empty occupancy on the originally
half-filled magnetic atom orbitals, i.e. H1) = HG) =0,
The second-order contribution is dominated by the mag-
netic coupling between electrons on NM and M sites, e.g.
Spk - Sqi- However, this term gives no contribution because
the total magnetic moment on each NM ion is zero in the
ground state, or (S,;) = 0. Consequently, the leading con-
tribution to superexchange is the fourth order in hopping
between M and NM ions, which consists of the “hops”
described by spin-isotropic matrix elements b;;, and the
“hops” given by anisotropic Cj; matrix elements. We have
assumed that the electron number fluctuation on the NM
ions is weak enough so that it can be ignored.

In time-reversal invariant systems, the magnetic
Hamiltonian consists of two-spin interactions between
nearest and further neighbors, four spin interactions, and
so forth [4,5,21,23]. In this paper, we confine to the two-
spin interactions. A general bilinear two-spin interaction
can be written as

Hep = Z S; - M’LJ ’ S] (14)
ij

Usually, the 3 x 3 interaction-matrix M,; is separated into
an antisymmetric and a symmetric matrix

F_
M} = 5

(15)
Further, the symmetric ij is often split into an isotropic
coupling matrix J;;I, and a symmetric traceless one

Lij = M — Ji,1 (16)
where J;; = Tr(M;;)/3 and I is a unit matrix. Alterna-
tively, the eigenvalues of the symmetric matrix M$ are
obtained by diagonalization, and then separated into the
isotropic exchange and Kitaev coupling [14]. The antisym-
metric exchange is commonly written as DM interaction
D;; - (S; x S;) since each antisymmetric 3 x 3 matrix
can be linearly mapped onto a 3D vector, (M;;)u, =
>~ Dijaexuw with Levi-Civita symbol ey, and Cartesian
components A, p and v. Thus, the exchange Hamiltonian
is rewritten in terms of the isotropic Heisenberg exchange,
DM interaction, and symmetric anisotropic exchange as

j

(17)

Casting off some constants and hopping terms, the 4th
order perturbation H* in equation (13) is rearranged into
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H,., form. The interaction matrix tensors in H,., include
the isotropic Heisenberg coupling

Jij =4 § Sijkn9knk'n’ Sjik'n’ (18)
knk’n’
Dzyaloshinskii-Moriya vectors
Dij =—d § Gknk'n’ (Vijknsjik’n/ - Sijknvjik’n’)7
knk'n’
(19)

and symmetric anisotropic exchange

;=4 g Gknk'n' (VijknViikin' + ViiknVijkn')
knk'n’

- gknk’n’I (Vijkn : Vjik’n’) (20)

with unit matrix I. To simplify the expressions of the cou-
pling matrix, the effective spin-isotropic hopping matrix
elements have been introduced between ¢ and j magnetic
ions after the definition by Chen and Balents [9]

Sijkn = Diknbinj + Cikn + Cinj, (21)
the effective spin-anisotropic hopping matrix elements

Vijkn = Ciknbinj + 0iknCrnj + 1 (Cikn X Cryj), (22)

and the coefficients originating from the third power of
(E — Hy — H,)~" in the 4th order perturbation H*)

(1 - %5kk:’6nn’)

Ek:nk:’n’
1

BB B’

Gknk'n’ = (Elc_nl + Ek_’il’)z

(23)

where FEj, is the energy difference between the ground
state and the intermediate excited state with one electron
or hole hopping to the nth orbital on k site from the i or j
site. Commonly, as a function of e4 and ¢, as well as the
onsite Coulomb interaction Uy and Up, the detail value
of Ey, depends on the electron configuration. Similarly,
E; is the single particle excitation energy for the j ions.
FEinirns corresponds to the double-electron or hole activa-
tion energy for two electrons or holes hopping to the nth
orbital on the k site and the n/th orbital on the k' site
from ¢ and j site.

In addition, the SOC on nonmagnetic ligands could
also induce the local spins on magnetic ions to align
along a specific local axis, i.e. the single-ion anisotropy or
magnetocrystalline anisotropy. The single-ion anisotropy
could be of the same order in magnitude as the pseu-
dodipole or Kitaev interactions [14]. It is written as a
lattice-dependent onsite tensor

Iy =4 E 2ViiknGknk'n' Viik'n'

knk’'n’

7gknk’n’I (Viikn : Viik’n/) .
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This provides a novel route to engineer the single-molecule
magnetic switch devices for storing or manipulating infor-
mation with the aid of spins.

4 Discussion and conclusion

DMI and anisotropic exchange as well as the single ion
anisotropy depend on the geometrical symmetry of lat-
tice. The introduction of the SOC effect of ligands actually
contributes to anisotropy on an equal footing as that of
magnetic ions via the hopping matrix, and maintains the
symmetries of both the hopping matrix elements and crys-
tal field levels. Therefore, the dependence of the magnetic
anisotropy on the crystal symmetry is just the same as
that of the SOC effects on the magnetic ions. The DMI and
anisotropic exchange are still anti-symmetric and sym-
metric, respectively, e.g. D;; = —Dj; and I';; = I'j;. For
example, in a system without inversion symmetry, both
DMI and anisotropic exchange could emerge, depending
on the detail geometric lattice symmetry. On the other
side, in a system with inversion symmetry, DMI disap-
pears but the anisotropic exchange could be preserved.
If the symmetry of the hopping matrix elements alters,
then the magnetic anisotropy may change accordingly. For
instance, a magnetic ion has no single ion anisotropy in
a cubic lattice surrounded by 6 same ligands. When one
ligand is replaced by a nonmagnetic ion with higher SOC
and even the crystalline electric field is kept the same, the
single ion anisotropy is induced with the magnetic moment
vector alone the line connecting the magnetic ion and the
substituted ligand. The original geometric symmetry is
broken due to the different SOC of the substituted ligand
and hence the hopping matrix elements.

Although we assume that the single-site energies €;.
may depend on the site index, in certain situations, for
example, with the same crystalline electric field for each
magnetic ion, it is possible to define site-dependent trans-
formations W such that the single-particle energies are
site independent. However, the overlaps between orbital
states, e.g. the spin-anisotropic matrix elements Cjn,;n
and the symmetric anisotropic exchange I';; could be
bond-dependent due to the orbital anisotropy and crys-
tal lattice geometry, including frustration [24]. Therefore,
taking advantage of the properties of the heavy nonmag-
netic ligands, additional methods are provided to design
potential exotic spin models, such as the Kitaev model
with bond-dependent anisotropic interaction.

Within Moriya’s theoretical framework, the DM inter-
action and the anisotropic exchange are proportional to
Ae and their quadratic forms, respectively. Moreover, A,
increases sharply with the atomic number Z., namely,
Ae o< Z2. Since the SOC on both the nonmagnetic lig-
ands and the magnetic ions contributes in the same way
to the magnetic anisotropy, the magnetic anisotropy is
thus dominated by the heavier ions. For example, in the
ferromagnetic Crlg and CrGeTes monolayers, the leading
contribution to the spin-anisotropic exchanges is from the
SOC on the nonmagnetic 5p Iodine or Tellurium anions
rather than from the magnetic 3d Cr ions because the
atomic number Z; = 53 and Zp. = 52 are much larger
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than that of Cr ions with Z.. = 24. Although the near-
est neighbor DM interaction vanishes due to the inversion
lattice symmetry the DM term may appear between the
next-nearest neighbors [11]. It is also intriguing to revisit
the magnetic properties in iron-based superconductors
since the atomic number of the surrounding nonmagnetic
anions is comparable to that of the irons [25].

Finally, although we neglect the direct hoppings
between magnetic ions, it is straightforward to include
them in our formula [9)].

To conclude, we have presented an analytical study of
the superexchange of magnetic cations through nonmag-
netic anions with SOC. We show that the SOC on non-
magnetic ligands could induce the anisotropic exchange,
DM interaction and single-ion anisotropy on their neigh-
boring magnetic ions. The nonmagnetic ligands contribute
to magnetic anisotropy in a similar way as the magnetic
ions. Our work demonstrates that exotic quantum states
in condensed matter systems, order phases in low dimen-
sional systems and single-molecular magnetic device could
be engineered by the SOC on nonmagnetic ligands.
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