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We theoretically investigate the unconventional superconductivity in the newly discovered infinite-
layer nickelates Nd1−xSrxNiO2 based on a two-band model. By analyzing the transport experiments,
we propose that the doped holes dominantly enter the Ni dxy or/and d3z2−r2 orbitals as charged
carriers, and form a conducting band. Via the onsite Hund coupling, the doped holes are coupled to
the Ni localized holes in the dx2−y2 orbital band. We demonstrate that this two-band model could
be further reduced to a Hund-Heisenberg model. Using the reduced model, we show the non-Fermi
liquid state above the critical Tc could stem from the carriers coupled to the spin fluctuations of
the localized holes. In the superconducting phase, the short-range spin fluctuations mediate the
carriers into Cooper pairs and establish dx2−y2 -wave superconductivity. We further predict that the
doped holes ferromagnetically coupled with the local magnetic moments remain itinerant even at
very low temperature, and thus the pseudogap hardly emerges in nickelates. Our work provides a
new superconductivity mechanism for strongly correlated multi-orbital systems and paves a distinct
way to exploring new superconductors in transition or rare-earth metal oxides.

I. INTRODUCTION

Various unconventional superconductors have prolifer-
ated experimentally over the recent decades although the
origins of the superconductivity (SC) in cuprates and
heavy fermion materials remain theoretically controver-
sial [1–3]. The quasi-two-dimensional (2D) iron pnictides
have triggered a new boom of the SC investigation [4]. In
particular, the search efforts for the compounds with the
geometrical and electronic structure similar to cuprates
are growing both experimentally and theoretically due to
the highest critical temperatures at ambient conditions.
Isostructural compounds, e.g. Sr2RuO4, Sr2IrO4 and
LaNiO2 as well as some artificial heterostructure have
been extensively proposed, and synthetized [5–20]. The
unremitting pursuits have been rewarded despite no evi-
dence of SC in some of these analogs so far.

Recently, the exciting discovery of superconductivity
in the hole doped infinite-layer nickelate Nd1−xSrxNiO2

redraws strong attention to the unconventional SC [6, 21–
25]. The quasi-2D Ni-O plane is geometrically analog to
the Cu-O plane in cuprates. The dx2−y2 orbital of each
Ni1+ ion is also half-filled, with an effective spin-1/2 on
each site. However, the differences from cuprates are
notably striking. In the parent compounds, there is no
sign of long-range magnetic orders in the measured tem-
perature range [26]. Maybe due to self-doping effects,
the electrons of the rare-earth Nd between Ni-O planes
form a 3D weakly-interacting 5d metallic state with an
electronic Fermi surface [21, 27–29]. Intriguingly, the re-
sistivity exhibits metallic temperature dependence down
to 60 K, and then shows insulating upturn at lower tem-
peratures, which could be the results of weak localization
effects, Kondo effects or temperature driven intra-band
transitions [6, 30, 31]. Upon chemical doping, additional

holes dominantly enter the d orbitals of the Ni ions rather
than O orbitals as in cuprates since the O 2p states are far
away from the Fermi level in nickelates [8, 23, 27, 32, 33].
The sign change of the Hall coefficient at low temper-
ature indicates that both electrons and holes may con-
tribute to the transport and thermodynamic properties
[6]. Moreover, it is debating whether the doped hole
forms a spin singlet or triplet doublon with the origi-
nal hole on a Ni ion [32–36]. Several microscopic models
have been proposed, such as the t-J models, the metallic
gas coupled to a 2D Hubbard model and the spin freezing
model [21, 27, 28, 33–37]. More surprisingly, absence of
superconductivity was recently claimed in the bulk nick-
elates and the film prepared on various oxide substrates
different from SrTiO. It was suggested that the absence
possibly results from the hydrogen intercalation [38–40].
Own to these confusions, more insights into the micro-
scopic mechanism in nickelates are imperative.

In this paper, we investigate the nickelate SC based
on the analysis of the transport experiments. Consider-
ing the positive Hall coefficient and the suppressed self-
doping effects at low temperature, we suggest that since
the Ni dxy or/and d3z2−r2 orbital is close to Fermi en-
ergy level, the doped holes may go to these orbitals and
establish a conducting band [8, 22, 23, 41]. The onsite
Hund interaction couples the conducting band with the
localized dx2−y2 orbital band together. The correlation
between the sparse carriers and the kinetic energy of the
localized holes could then be ignored. Thus, the two-
band model is simplified into a Hund-Heisenberg model.
We show that both the non-Fermi liquid in normal state
and the superconductivity is determined by the spin fluc-
tuations of the localized holes. This SC mechanism could
be realized in multi-orbital strongly correlated systems
with both Hund and Heisenberg interactions [42–45].
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II. MICROSCOPIC HAMILTONIAN

We first analyze the electronic properties in normal
state based on the transport experiments [6]. In the
parent compounds, both the resistivity and Hall effect
measurements show Kondo effects with logarithmic tem-
perature dependence from tens to around several kelvin.
The Kondo effects were attributed to the hybridization
between the Nd 5d states and the Nd 4f or Ni 3d states
as in rare-earth heavy fermion compounds although the
ab initio study suggests the hybridization between the
Ni 3d state and the Nd 5d states is negligible, and the
4f electron spin fluctuation should be weak due to the
large magnetic moment and the energy far away from
Fermi energy level [27–29, 36]. In Nd0.8Sr0.2NiO2, above
60 K, the negative Hall coefficient indicates that the Nd
5d electrons dominate the transport and thermodynamic
properties. With the decreasing of temperature, the self-
doping effect is reduced as in semiconductors and the Hall
coefficient also changes its sign from negative to positive.
This means that the doped holes take over the dominant
role in the transport and thermodynamics at low tem-
perature. In addition, the Hund coupling between the
3d doped holes and localized holes is around an order
of magnitude stronger than the Kondo coupling between
the 5d electron and the 3d magnetic moments. There-
fore, we ignore the 5d electrons in our model, and in our
discussion section we show that they only give negligi-
ble contribution to the superconductivity and non-Fermi-
liquid behavior in the normal state. Whether the doped
hole forms a high spin triplet or a low spin singlet dou-
blon with the original hole on the dx2−y2 orbital is still
controversial [32–36]. In fact, a Ni2+ ion with d8 config-
uration often has a high spin S = 1 in common Nickel
oxides as the result of Hund coupling. According to the
first principle calculation, the energy of the triplet state
is around 1 eV lower than that of the singlet, and the top
of the Ni dxy or/and d3z2−r2 orbital band is also close to
the Fermi energy [8, 22, 23, 41]. Moreover, the holes
doped on the dxy or/and d3z2−r2 orbitals could itinerate
freely, agreeing well with the positive Hall coefficient at
low temperature. The delocalization of the doped holes
on dxy or/and d3z2−r2 orbitals is attributed to the fact
that the doped hole concentration is dilute, and under
the short range antiferromagetic (AF) correlation back-
ground, a hole can hop freely to its next nearest neighbor
sites without energy cost as long as these sites are not
occupied by another doped hole. In contrast, the doped
holes on the already half-filled dx2−y2 orbitals tend to
be localized at low temperature, otherwise the hopping
disturbs the magnetic configurations of short-range AF
correlations as in cuprates [3].

Based on the aforementioned analysis, we confine our
study to the Ni-O planes and assume that the holes doped
on the dxy or/and d3z2−r2 orbitals form a conducting
band, coexisting with the localized dx2−y2 orbital band.

ci = (ci↑, ci↓)
T is introduced as the annihilation operator

of the bare carrier particles on the dxy or/and d3z2−r2

FIG. 1: Schematic spin configuration on the Ni-O planes of
the hole-doped nickenates. The red thicker arrows denote the
spins of the localized holes in the dx2−y2 orbital band. The
local magnetic moments interact with each other through the
Heisenberg interaction. The blue arrows denotes the spins
of the doped holes as carriers in the conducting dxy or/and
d3z2−r2 orbital band. Their spins are parallel with the lo-
cal magnetic moments due to the strong Hund coupling. In
normal state, the scattering by the spin fluctuations of the lo-
calized holes transfers the carrier Fermi gas into a non-Fermi
liquid. A carrier could hop to its next nearest neighbor sites
without any energy cost as long as these sites are not occupied
by other doped holes. Thus the doped holes itinerate over the
lattice even at very low temperature without formation of a
pseudogap. While in superconducting phase, two neighboring
carrier particles are mediated into a Cooper pair by the spin
fluctuations of the local magnetic moments.

orbitals of the ith Ni site, and di = (di↑, di↓)
T is the real

space annihilation operator of the localized holes on the
Ni dx2−y2 orbitals. The Hamiltonian is written as

H = Hc +Hd + Uc
∑
i

nci↑nci↓ + Ud
∑
i

ndi↑ndi↓

+Ucd
∑
i

ncindi − Jh
∑
i

Sci · Sdi, (1)

with

Hc = εc0
∑
i

c†i ci −
∑
i,j

tcijc
†
i cj (2)

and

Hd = εd0
∑
i

d†idi −
∑
i,j

tdijd
†
idj , (3)

where tcij and tdij are the hopping integrals of the carri-
ers in conducting band and the localized holes in dx2−y2

band, respectively. nci = c†i ci = nci↑ + nci↓ is the occu-
pancy of the carriers with spin up and down on the ith
site, and ndi is the occupancy of the dx2−y2 orbital. Jh
is the Hund coupling between the carriers and the local-
ized holes on the same site. Uc is the onsite Coulomb
repulsion between carriers, Ud is the interaction between
the localized holes, and Ucd is the inter-orbital Coulomb
repulsion between the carrier and localized hole on the
same site.
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To further simplify the Hamiltonian, based on the fact
that the hopping term tdij is much less than the large
onsite Coulomb interaction Ud, we take the tdij as the
perturbation then the Hubbard model for the localized
dx2−y2 orbital band is reduced to a Heisenberg model. In
addition, the large onsite Coulomb interaction strongly
suppresses the particle number fluctuation on the half-
filled dx2−y2 orbitals, so that the Coulomb interaction
acting on the carriers by the localized holes could be
renormalized into the chemical potential within the singly
occupied approximation 〈ndi〉 = 1. Furthermore, in con-
sideration of the delocalization and the sparse concen-
tration 〈nci〉 of the doped holes in conducting band, we
can safely ignore the correlation between the carriers as
in common metals. Alternatively, the magnetic coupling
Sci · Scj term is ignored due to the much weaker magne-
tization of the carriers than that of the localized holes.
Finally, we arrive at a Hund-Heisenberg model,

H = Hc − Jh
∑
i

Sci · Sdi + JH
∑
〈i,j〉

Sdi · Sdj (4)

where Sci = c†iσci/2 and Sdi = d†iσdi/2 with the Pauli
vector σ. JH is the Heisenberg interaction between the
dx2−y2 orbital holes on the Ni square lattice. Here, we
have ignored the kinetic energy of the localized holes, and
the carrier chemical potential εc0 has been replaced by
εc = εc0+Ucd in Hc to include the energy renormalization
from the Coulomb interaction of the holes on the dx2−y2
orbitals.

This model is formally similar to the Kondo-
Heisenberg model on a 2D square lattice [46, 47]. The
difference is the conducting carrier ferromagnetically cou-
pled to the localized magnetic moments rather than an-
tiferromangetically. In addition, the onsite Hund fer-
romagnetic coupling is in favor of the delocalization of
the doped holes under the antiferromagnetic background
even at very low temperature, and thus it is difficult to
form a pseudogap. In the following, we show that the
spin fluctuations of the localized dx2−y2 states not only
act as the pairing ‘glue’ in superconducting state, but
also results in non-Fermi liquid in normal state.

III. NORMAL STATE

The bare doped holes are assumed to compose a dilute
Fermi gas with the retarded Green’s function G0

c(k, ω),
bathed in the Heisenberg antiferromagnets of the local-
ized holes. At low temperature, the transport and ther-
modynamic properties are determined by the imaginary
part of the carrier self-energy. However, different from
the Fermi liquids, the dominant contribution to the self-
energy is from the interaction between the carriers and
the localized holes rather than the carrier-carrier inter-
action. Because the concentration of the carriers is much
lower than the localized holes despite the same order
strength of the two kinds of interactions. Therefore,

we ignore the self-energy correction by the carrier-carrier
correlation interaction. Within the Born approximation,
the imaginary part of the self-energy correction by the
renormalized spin fluctuation χd(q, ω) of the localized
dx2−y2 holes reads [46]

ImΣc(k, ω) ∼ J2
h

∫ ωc

−ωc

dv [nB(v) + nF (ω + v)] I(k, ω, v),

where nB and nF are the Bose and Fermi functions, ωc is
the upper cutoff frequency of magnetic fluctuations and

I(k, ω, v) =

∫
d2q

4π2
Imχd(q, v)ImG0

c(k + q, ω + v). (5)

It is worth noting that the neglect of the higher order
self-energy corrections is based on the fact that the car-
riers is weakly magnetized by the local magnetic mo-
ments or |〈Sci〉| � 1/2. Therefore, the Hund coupling
in the effective Hamiltonian only gives perturbation cor-
rection to the carrier self-energy despite the large Hund
coupling constant in Eq. (4). However, the the approx-
imation of neglecting the higher order corrections may
be questionable if the Imχd(q, v) ∼ vs with s ≤ 0 at
low frequency. For instance, the perturbation related
coupling constant λq = 2

∫∞
0
dvα2

q(v)Imχd(q, v)/v di-

verges, where α2
q(v)Imχd(q, v) is the generalized McMil-

lan carrier-boson coupling function.
Integrating over the momentum k, one finds the

momentum-integral imaginary part of the Fermi gas self-
energy

ImΣc(ω) ∼ J2
h

∫ ωc

−ωc

dv [nB(v) + nF (ω + v)] Imχd(v)ρc(ω + v)

with the aid of∫
d2k

4π2
I(k, ω, v) = −πρc(ω + v)Imχd(v) (6)

where the magnetic fluctuations χd(v) ≡∫
d2qχd(q, v)/4π2. ρc is the density of states of the

carriers. Since the absolute value of nB(v) + nF (ω + v)
exponentially decreases to zero with increasing |v|, the
energy range of integration can be extended from the
cutoff ωc to infinity, and ρc(ω + v) is approximately
substituted by ρ0c , the carrier density of states at Fermi
energy level. One has

ImΣc(ω) ∼ J2
hρ

0
c

∫ ∞
−∞

dv [nB(v) + nF (ω + v)] Imχd(v).

Since no experimental or theoretical results on Imχd(v)
could be obtained presently we assume that the
momentum-integral spin-fluctuation spectra of the half-
filled dx2−y2 holes take the similar form of the under-
doped cuprates[48–50] , e.g. Imχd(v) ∼ tanh (v/2T ).
Using the analytical frequency integral equation[46]
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∫ ∞
−∞

dv [nB(v) + nF (ω + v)] tanh
( v

2T

)
= 2T

[
1 +

ω

2T
tanh

( ω
2T

)]
, (7)

the carriers have the marginal Fermi liquid-like self-
energy

ImΣc(ω, T ) ∼ πρ0cJ
2
hT
[
1 +

ω

2T
tanh

( ω
2T

)]
∼ max (|ω|, T ). (8)

Then the linear temperature dependence of electrical re-
sistivity observed in the experiments could be explained
[6], and some other anomalous transport properties are
expected to be experimentally verified.

In cuprates, since the doped holes are antiferromagnet-
ically coupled to the localized holes, the hopping disturbs
the original magnetic configuration, and thus the doped
holes tend to be localized at low doping or at low tem-
perature [3]. On the contrary, in nickelates, the doped
holes, which are ferromagnetically coupled to localized
holes, could hop over the Ni-O plane without affecting
the magnetic background so that they are not easy to be
trapped around the local magnetic moments even at low
temperature. In addition, a carrier could hop to its next
nearest neighbor sites without any energy cost as long as
these sites are not occupied by other doped holes. There-
fore, we propose that it is almost impossible to observe
a pseudogap in nickelates.

IV. SUPERCONDUCTIVITY

In normal state, the carriers are scattered by the short-
range spin fluctuation as the metallic gas by phonons. In
the superconducting state, the carrier pairing is medi-
ated by the spin fluctuations analogues of the pairing by
phonons in the BCS mechanism. It is worthy of note
that we assume that the conducting carriers only par-
tially screen the local moments without formation of lo-
calized triplets or singlets, and then the Heisenberg in-
teraction between the screened moments and their sur-
roundings could survive. Thus, the carriers on unit cell i
and j could interact with each other by exchange of the
spin fluctuation in terms of a four point vertex, written
in real space as

Γαβ,γδ(i, j, ω) = −J
2
h

4
χd(i, j, ω)σαβσγδ. (9)

We assume that the AF spin fluctuation only mediates
the itinerant holes spacing within the AF correlation
length into stable Cooper pairs. The correlation length
in nickelates is assumed to be the same scale as that in
cuprates at low temperature, around two times the lat-
tice constant. Thus, we only take the nearest-neighbor

χd(〈i, j〉 , ω) into account. Then, the interaction Hamil-
tonian of the carriers can be written in the coordinate
representation as [46]

Hsc = J2
hχd(〈i, j〉 , ω)

∑
〈i,j〉

Sci · Scj , (10)

where the nearest neighbor χd(〈i, j〉 , ω) is assumed to
be space independent. For a local pair, the energy of a
spin-triplet is about J2

hχd(〈i, j〉 , ω) higher than that of
a spin-singlet, and thus the antiferromagnetic spin fluc-
tuations favors spin-singlet pairing. Combining with Hc

in Eq. (2), a t-J-like model is reached. Interestingly,
despite the formal similarity with the conventional t-J
model [51], here the spin-like operator s is associated
with the carriers rather than the localized holes.

After transforming to momentum space, the Hamilto-
nian on the square lattice becomes

Hsc =

∫
d2kd2k′

(2π)4
J (k− k′) c†k↑c

†
−k↓c−k′↓ck′↑, (11)

with

J (k− k′) = −2g
[
cos (kx − k′x) + cos

(
ky − k′y

)]
(12)

and the effective coupling between the carriers

g ≡ 3

4
J2
hχd(〈i, j〉 , ω). (13)

The Cooper pairing potentials are symmetrized with
J(k− k′) and J(k + k′) in the singlet channel as [52]

Vk,k′ =
J (k− k′) + J (k + k′)

2
, (14)

i.e.

Vk,k′ = −2g
[
cos kx cos k′x + cos ky cos k′y

]
(15)

The pairing interaction can be further decoupled into
d-wave and s-wave components,

2 cos kx cos k′x + 2 cos ky cos k′y = γkγk′ + γskγ
s
k′ , (16)

with the d-wave gap functionγk = cos kx − cos ky, and
the extended s-wave gap function γsk = cos kx + cos ky.
For s-wave superconductivity, the pairing interaction is
expected to be negative and nearly isotropic. However,
the interaction Vk,k′ is positive at k− k′ ∼ Q, and the
AF spin fluctuation is strongly momentum dependent,
i.e. peaked at or near the AF wave vector Q [28]. There-
fore, only the d-wave pairing channel is favored in the
spin- fluctuation SC mechanism [53–61] and the attrac-
tive pairing interaction dominantly mediates the carriers
on the nearest-neighbor unit cells [62]. Thus, the pair-
ing interaction is V dk,k′ = −gγkγk′ in the dx2−y2 channel,
which could be detected in phase sensitive interference
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measurements [63]. Consequently, in momentum space,
a weak coupling BCS interaction can be written

Hscd = −g
∫

d2k

4π2
γkc
†
k↑c
†
−k↓

∫
d2k′

4π2
γk′ck′↑c−k′↓, (17)

The superconductivity order parameter γk∆sc is intro-
duced in the mean field method with the BCS gap equa-
tion

∆sc = −g
∫

d2k

4π2
γk < c†k↑c

†
−k↓ >, (18)

where c†k↑c
†
−k↓ is the Cooper pair operator denoting a

bond state of two carriers with opposite momentum and
spin.

Solving the gap equation in the limit ∆sc(T → Tc)→
0, the SC transition temperature Tc ∼ ωce

−1/λ with
λ = gρ0c/2 for weak coupling d-wave superconductors.
Since the AF correlation in nickelates is weaker than that
in cuprates, the spin fluctuation cutoff energy h̄ωc ∼ JH
should be lower than that in cuprates. Moreover, the
Hund coupling Jh is smaller than the magnetic coupling
JK between the O carriers and Cu local moments in
cuprates. Therefore, the lower critical temperature Tc
in nickelates could be understood.

V. DISCUSSION AND CONCLUSION

Actually, we could not exclude the possibility that the
doped holes go to the Ni dx2−y2 orbitals although the
strong onsite Coulomb repulsion pushes the dx2−y2 lower
Hubbard band away from the Fermi level [8, 64]. Nev-
ertheless, if the doped holes forms onsite spin singlet on
the dx2−y2 orbital with the original localized hole, the al-
ready weak AF coupling is further suppressed and hence
the superconductivity is weakened. The critical temper-
ature should also be sensitive to the doping level. In
addition, pseudogap should emerge at low temperature
as in cuprates. On the contrary, the doped holes on the
dxy or/and d3z2−r2 orbital may enhance the original AF
couplings although the average spin of a carrier is very
weak. In addition, the SC critical temperature depending
on the Hund coupling Jh and the spin fluctuation χd is
not directly related to the doping level unless the carrier
density is too low. It is not likely to form a pseudogap
due to the ferromagnetic coupling between the carriers
and the local magnetic moments in our model. We ex-
pect more experiments to check these differences.

The Nd 5d electrons have been ignored in our model
for the doped holes dominate the transport and thermo-
dynamics at low temperature in the high doped exam-
ples. Nevertheless, in the recent paper[65], it was found
that the Hall coefficients become negative at the dop-
ing x below 0.175, which means that electrons may be

the dominant carriers at low doping. The 5d electron as
carrier could couple to the Ni localized dx2−y2 magnetic
moments via the Kondo interaction[36]. Thus, the inter-
action between the 5d electrons and spin fluctuation in
nickelates could be described by the Kondo-Heisenberg
model[46]. However, since the Kondo coupling (JK ∼0.1
eV) is around ten times smaller than the Hund coupling
(Jh ∼ 1 eV), the 5d electrons give much weaker con-
tribution to the superconductivity, and their selfenergy
renormalization in the normal state is also much weaker
than that of the 3d holes, namely, Tc ∼ ωce

−1/λ with
λ ∼ J2

K , J2
h and ImΣ(ω, T ) ∼ J2

K , J2
h, respectively.

We have assumed that the momentum-integral spin-
fluctuation spectra of localized Ni localized dx2−y2 holes
on the Ni-O planes take the similar form of the under-
doped cuprates, and then the marginal Fermi liquid-like
self-energy is obtained. We expect that the neutron scat-
tering and more transport experiments could be con-
ducted to verify our assumption. Moreover, if the doped
holes enter the dxy or/and d3z2−r2 orbital then the doping
does not suppress the AF fluctuations. This also could
be judged by the neutron scattering measurements. In
addition, to experimentally determine if the doped holes
enter the dxy or/and d3z2−r2 orbital, one way is to apply
Ni L-edge polarized x-ray absorption near edge structure
(XANES) on the single-crystals to study the distribution
of holes in the Ni 3d orbitals [66].

In conclusion, we have proposed a Hund-Heisenberg
model to investigate the unconventional SC in the
infinite-layer nickelates superconductor. By analyzing
the transport experiments, we suggest that the doped
holes enter the Ni dxy or/and d3z2−r2 orbitals, and form
a conducting band. The doped holes interact with the lo-
calized holes on dx2−y2 orbital through the onsite Hund
coupling. We show that the non-Fermi liquid state in nor-
mal phase results from the carrier gas interacting with the
spin fluctuations of the localized holes. In the supercon-
ducting phase, it is still the short-range spin fluctuations
that mediate the carriers into Cooper pairs and leads
to d-wave superconductivity. We expect experiments to
check our predictions that the doped holes slightly en-
hance the spin fluctuations and a pseudogap hardly forms
in nickelates. We have provided a new SC mechanism for
multi-orbital strongly correlated systems, e.g. iron pnic-
tides and it should aid in probing or synthesizing new
superconductors in transition or rare-earth metal oxides.
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R. Kiemel, S. Lösch, S. Kemmler-Sack, R. Hoppe,
H. Müller, and D. Kissel, Physica B: Condensed Matter
158, 446 (1989).


	I Introduction
	II Microscopic Hamiltonian
	III Normal state
	IV Superconductivity
	V Discussion and Conclusion
	 References

