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Pressure-driven collapse of the relativistic electronic ground
state in a honeycomb iridate
J. Patrick Clancy1, Hlynur Gretarsson1, Jennifer A. Sears1, Yogesh Singh2, Serge Desgreniers3, Kavita Mehlawat2, Samar Layek4,
Gregory Kh. Rozenberg4, Yang Ding5, Mary H. Upton6, Diego Casa6, Ning Chen7, Junhyuck Im8, Yongjae Lee 8,9, Ravi Yadav 10,
Liviu Hozoi10, Dmitri Efremov10, Jeroen van den Brink10 and Young-June Kim1

Honeycomb-lattice quantum magnets with strong spin-orbit coupling are promising candidates for realizing a Kitaev quantum spin
liquid. Although iridate materials such as Li2IrO3 and Na2IrO3 have been extensively investigated in this context, there is still
considerable debate as to whether a localized relativistic wavefunction (Jeff= 1/2) provides a suitable description for the electronic
ground state of these materials. To address this question, we have studied the evolution of the structural and electronic properties
of α-Li2IrO3 as a function of applied hydrostatic pressure using a combination of x-ray diffraction and x-ray spectroscopy techniques.
We observe striking changes even under the application of only small hydrostatic pressure (P ≤ 0.1 GPa): a distortion of the Ir
honeycomb lattice (via X-ray diffraction), a dramatic decrease in the strength of spin-orbit coupling effects (via X-ray absorption
spectroscopy), and a significant increase in non-cubic crystal electric field splitting (via resonant inelastic X-ray scattering). Our data
indicate that α-Li2IrO3 is best described by a Jeff= 1/2 state at ambient pressure, but demonstrate that this state is extremely fragile
and collapses under the influence of applied pressure.
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INTRODUCTION
The electronic ground state in many iridate materials is described
by a complex wave-function in which spin and orbital angular
momenta are entangled due to relativistic spin-orbit coupling
(SOC).1,2 Such a localized electronic state carries an effective total
angular momentum of Jeff= 1/2.3,4 In materials with an edge-
sharing octahedral crystal structure, such as the honeycomb
iridates α-Li2IrO3 and Na2IrO3, these Jeff= 1/2 moments are
expected to be coupled through a special bond-dependent
magnetic interaction,5–7 which is a necessary condition for the
realization of a Kitaev quantum spin liquid.8 However, this
relativistic electron picture is challenged by an alternate descrip-
tion, in which itinerant electrons are confined to a benzene-like
hexagon, keeping the system insulating despite the delocalized
nature of the electrons.9,10 In this quasi-molecular orbital (QMO)
picture, the honeycomb iridates are an unlikely choice for a Kitaev
spin liquid.
The Jeff= 1/2 ground state arises from a very specific hierarchy

of energy scales, set by crystal electric field, spin-orbit coupling,
and electronic correlation effects. These energy scales can be
probed by resonant inelastic X-ray scattering (RIXS), which is
sensitive to d−d transitions involving the Ir 5d valence levels (both
within the t2g manifold and between the t2g and eg manifolds).11–
15 At ambient pressure, high resolution RIXS measurements on α-
Li2IrO3

11 have shown that this material occupies a regime where
octahedral crystal field splitting ≫ spin-orbit coupling ≫ trigonal

crystal field splitting. These measurements indicate that the
splitting of the lower Jeff= 3/2 levels (Δ~0.11 meV) is small
compared to the splitting between the Jeff= 3/2 and Jeff= 1/2
levels (3λ/2 ~ 0.78 eV), providing some of the most compelling
evidence in favor of the Jeff= 1/2 description of this compound.
Another experimental signature often associated with the Jeff= 1/
2 relativistic electronic ground state is an unusually large
difference between the X-ray absorption spectroscopy (XAS)
“white line” intensity observed at the Ir L3 (2p3/2 → 5d) and L2
(2p1/2 → 5d) absorption edges.16–18 The ratio of these intensities is
known as the L3/L2 branching ratio (BR), and provides a direct
measure of 〈L⋅S〉, the angular part of the expectation value for the
spin orbit operator.19,20 In the absence of SOC, one expects BR= 2,
reflecting the fact that there are twice as many states in 2p3/2 as in
2p1/2. In a wide range of iridate materials, including Na2IrO3, large
BR ranging from 4 to 6 have been observed, and have been
interpreted as evidence for the Jeff= 1/2 state.18

Experimentally distinguishing between the localized Jeff= 1/2
and itinerant QMO descriptions of the honeycomb iridates is
complicated by the complex hierarchy of energy scales involved.
In fact, Foyevtsova and coworkers have argued that the
aforementioned X-ray spectroscopy results are not incompatible
with a QMO-based picture.10 However, the nature of the
wavefunction can often be revealed indirectly when an appro-
priate tuning parameter is used to vary the electronic properties of
the system. Hydrostatic pressure is a particularly effective tuning
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parameter, as it can be used to directly modify the overlap
between electronic orbitals, and thereby control the electronic
bandwidth or correlation strength.17,21,22 In recent theoretical
work by Kim et al.23 it has been suggested that the honeycomb
iridates could be tuned between the localized Jeff= 1/2 and
itinerant QMO regimes by varying the energy scale associated
with either the spin-orbit coupling or the electronic correlations.
Therefore, hydrostatic pressure may provide an ideal experimental
knob to switch between these two pictures.
We have studied the evolution of the structural and electronic

properties of the honeycomb lattice iridate α-Li2IrO3 as a function
of applied hydrostatic pressure using three complementary
synchrotron x-ray techniques. In addition to RIXS and XAS, we
used conventional x-ray powder diffraction (XRD) to study the
crystal structure of this material. The pressure of the sample was
tuned from ambient pressure up to 10 GPa using a diamond anvil
cell (DAC). We observe dramatic suppression of the XAS branching
ratio with the application of small (~0.1 GPa) hydrostatic pressure,
which arises from a pressure-induced structural distortion of the
ideal honeycomb lattice. These changes occur at pressures well
below the structural phase transition into a dimerized phase
(Pc≈3 GPa), indicating the fragility of the Jeff= 1/2 state. The RIXS
data also show strong, non-trivial pressure dependence, which will
be discussed with the aid of density functional calculations.

RESULTS
X-ray absorption spectroscopy
The pressure dependence of the x-ray absorption spectra for α-
Li2IrO3 is provided in Fig. 1. The large branching ratio observed at
ambient pressure (BR= 5.1±0.4) is consistent with a Jeff= 1/2 state,
and is similar to previously reported BR for other spin-orbit-driven
iridates such as Sr2IrO4.

17,18 However, the BR of α-Li2IrO3 drops
precipitously under applied pressure, falling to less than 2/3 of its
original value by P= 1.1 GPa. The BR continues to decrease more
gradually up to ~3 GPa, and ultimately plateaus at a high pressure
value of 2.8±0.1 GPa. Although dramatically reduced from ambient
pressure, this value still exceeds the statistical branching ratio (BR
= 2) expected in the limit of negligible SOC. In fact, it is strikingly
similar to that of iridium metal (BR ~ 3),18,24,25 a material which
exhibits significant SOC, but which does not harbour a Jeff= 1/2
ground state. As a result, these data suggest that applied pressure
results in a collapse of the Jeff= 1/2 ground state in α-Li2IrO3 by
P= 1.1 GPa.
The abrupt drop in branching ratio is also qualitatively

reproduced by ab initio quantum chemistry calculations, as shown
in the inset of Fig. 1c and described in the “Methods” section. In

fact, these calculations, which are based on the experimental
crystal structures determined from XRD, suggest that the drop in
branching ratio actually occurs at significantly lower pressures,
close to P= 0.1 GPa. We have carried out high pressure electrical
resistance measurements on α-Li2IrO3 (provided in the SM), which
indicate that the sample remains insulating up to 7 GPa. This
confirms that it is the Jeff= 1/2 character of the ground state, and
not its insulating properties, that is disrupted by applied pressure.
The pressure scale associated with this change in BR is quite

remarkable in comparison with other iridates. In Sr2IrO4 for
example, the BR remains essentially unchanged up to 30 GPa,17

and an applied pressure of 70 GPa is required to produce a
decrease similar to what is observed in Fig. 1. This suggests that α-
Li2IrO3 is situated much closer to the boundary of the Jeff= 1/2
relativistic electronic state, and shows that it is possible to tune
the system into a new electronic ground state under the influence
of applied pressure.

X-ray Diffraction
In order to elucidate the role of structure in these electronic
changes, we performed x-ray powder diffraction measurements,
as shown in Fig. 2. These measurements reveal that α-Li2IrO3

undergoes a series of two structural distortions as a function of
pressure. The first of these distortions, which arises at P ~ 0.1 GPa,
is characterized by a gradual elongation of the Ir honeycomb
lattice. At ambient pressure, α-Li2IrO3 displays an almost ideal,
undistorted Ir honeycomb lattice,11,26,27 with 6 equal Ir-Ir bond
lengths of 2.98 Å. By 0.1 GPa, we find that this honeycomb lattice
has begun to distort, forming 2 long bonds (3.08 Å) and 4 short
bonds (2.92 Å) on each Ir hexagon. Such a distortion is fully
allowed under the C2/m space group reported for this compound
at ambient pressure.
This initial distortion is followed by a much larger distortion,

which takes place during a first order structural phase transition at
3 GPa. This transition is evident from peak splitting in the
observed diffraction patterns (Fig. 2a), a discontinuous jump in
lattice parameters (see SM), and an extended phase coexistence
region from P ~ 3 to 5 GPa. Structural refinements indicate that
this transition is associated with a distortion that lowers the crystal
symmetry from monoclinic (C2/m) to triclinic (P-1). This causes the
honeycomb lattice to stretch and buckle, with each Ir hexagon
developing 2 short bonds, 2 intermediate bonds, and 2 long
bonds. The length of the 2 short bonds in the triclinic structure is
remarkably small (2.31 Å), which strongly suggests the formation
of Ir-Ir dimers at high pressures. After the original submission of
this article, high pressure x-ray diffraction measurements on single
crystal α-Li2IrO3 were reported by V. Hermann et al.28 These
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Fig. 1 X-ray absorption spectroscopy (XAS) can be used to probe the relativistic Jeff= 1/2 ground state of α-Li2IrO3. At ambient pressure, XAS
measurements reveal an anomalously large intensity difference between the main white line features observed at a the Ir L3 (2p3/2 → 5d) and
b Ir L2 (2p1/2 → 5d) absorption edges. This large L3/L2 branching ratio is a strong signature of the Jeff= 1/2 ground state. c Under applied
pressure, the branching ratio decreases rapidly, approaching a value reminiscent of elemental iridium. The high pressure branching ratio
remains greater than the statistical ratio of 2, but falls well below the values reported for other spin-orbit-driven Jeff= 1/2 systems. (Inset) This
qualitative trend is also captured by quantum chemistry calculations based on the experimental crystal structure
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measurements confirm the presence of a high pressure structural
phase transition, with lattice dimerization occurring at Pc ~
3.8 GPa. A similar case of structural dimerization has also been
reported in the honeycomb lattice ruthenate Li2RuO3.

29–31 In
Li2RuO3, the Ru honeycomb lattice exhibits a strong tendency to
form local dimers and covalent Ru-Ru bonds,31 with the
development of long-range dimer order occurring below TC ~
540 K.29,31 Interestingly, we note that the rapid drop in branching
ratio in α-Li2IrO3 appears to coincide with the small initial
distortion at 0.1 GPa, rather than the much more obvious
transition associated with the structural dimerization at 3 GPa.

Resonant inelastic X-ray scattering
The pressure dependence of the RIXS spectra for α-Li2IrO3 is
shown in Fig. 3. We note that the data shown here were obtained
using a higher flux/lower resolution experimental configuration
compared to earlier ambient pressure measurements on this
compound.11 However, this energy resolution is sufficient to show
that the d–d excitations are very sensitive to applied pressure, with
significant changes in the distribution of spectral weight

associated with transitions between the Ir t2g levels. In particular,
the strong energy loss peak at �hω ¼ Ei � Ef ¼ 0:78 eV (associated
with transitions between the Jeff= 3/2 and Jeff= 1/2 levels)
gradually decreases in intensity, while a new inelastic peak
develops at �hω � 1:40 eV. The total spectral weight of these two
features is approximately constant as a function of pressure
(shown in the inset of Fig. 3a), implying that spectral weight
transfers from the low energy peak to the high energy peak,
presumably due to a reorganization of the t2g energy levels. The
most obvious consequence of this new energy level scheme is
that the trigonal crystal field splitting becomes larger than the
spin-orbit coupling, confirming that the Jeff= 1/2 model is no
longer a valid description for this system. We note that the peak at
1.40 eV first appears at the lowest applied pressure, but that the
largest change in spectral weight coincides with the structural
transition at P ~ 3 GPa.
A comparison of t2g energy level schemes corresponding to the

localized Jeff= 1/2, localized pseudospin S= 1/2, and itinerant
QMO models is provided in Fig. 3b–d. Under moderate pressure
(0.2 < P < 2.0 GPa), the RIXS spectra can be fit equally well using
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either the itinerant QMO model or the pseudospin S= 1/2 model,
a localized electron picture which applies in the limit of large non-
cubic crystal electric field (Δ > 3λ/2).32 However, the pressure-
induced peak at 1.40 eV develops an increasingly asymmetric
lineshape at higher pressure, and above ~2 GPa it cannot be
accurately fit using a single symmetric lineshape (see Supplemen-
tary Materials for further details). The quality-of-fit is significantly
improved by introducing a third inelastic peak at slightly higher
energies (�hω � 1:60 eV). Such a three-peak spectrum cannot be
justified in the localized electron model, but it is one of the
distinguishing features of the itinerant QMO model.

In the QMO model originally proposed for Na2IrO3 by Mazin
et al.9 each Ir hexagon forms a series of six QMOs which are
organized into four distinct energy levels as shown in Fig. 3. These
orbitals are occupied by 5 Ir valence electrons, giving rise to three
possible d–d transitions within the t2g manifold. Furthermore, the
QMO theory predicts that the energies of these four levels are
based on only two independent parameters: the nearest neighbor
(NN) and next nearest neighbor (NNN) O-assisted hopping terms,
t01 and t02. The high pressure RIXS spectra can be fit to a model
based on this QMO energy level scheme with remarkably good
agreement. The experimental values of the hopping parameters
extracted from these fits are t01 ¼ 0:27 eV and t02 ¼ 0:15 eV at
2.4 GPa (monoclinic phase) and t01 ¼ 0:33 eV and t02 ¼ 0:11 eV at
4.8 GPa (triclinic phase). These values can be compared to the
theoretical estimates of t01 ¼ 0:27 eV and t02 ¼ 0:075 eV predicted
for Na2IrO3 at ambient pressure.9

Although the RIXS spectra collected in the high pressure triclinic
phase are still well described by the same three transition energy
level scheme, it should be noted that the original QMO picture
may no longer be valid within this regime. In particular, the
dimerization of the honeycomb lattice may be expected to alter
the character of the molecular orbitals that make up these states.
However, in spite of the large lattice distortion at 3 GPa, we find
that the RIXS spectra evolves very smoothly as a function of
pressure, showing similar qualitative features above and below
the structural transition.

DISCUSSION
The electronic structure of α-Li2IrO3 can be investigated more
closely with the aid of density functional calculations, as shown in
Fig. 4. As the experimental data suggests, these calculations
indicate that the electronic density of states (DOS) is very sensitive
to the effect of applied pressure. At ambient pressure (Fig. 4a), the
DOS resembles that of a localized Jeff= 1/2 spin-orbital Mott
insulator.11 As the pressure increases towards 2.8 GPa (Fig. 4b, c), a
series of four peaks gradually develop in the vicinity of the Fermi
level, with three peaks below Ef and one peak above. This DOS
appears to be consistent with the energy level scheme suggested
by the RIXS data, and is reminiscent of an itinerant QMO insulator
with a gap of ~0.2 eV. The development of a QMO-like state is
supported by previous DFT calculations by Foyevtsova et al.10

which suggest that moderate structural distortions act to enhance
effective intrahexagon hopping parameters, while reducing the
interhexagon hopping parameters. As a result, the overall effect of
the primary distortions that occur in the honeycomb iridate crystal
structure—orthorhombic distortions, trigonal distortions, and
rotations of the IrO6 octahedra—is believed to enhance the
QMO character of these materials.
As noted above, a QMO-like state is unlikely to survive into the

heavily distorted triclinic phase without substantial modification.
Indeed, the calculated DOS in the dimerized phase (Fig. 4d)
appears to have lost much of its QMO character, as the overlap
between t2g bands below Ef becomes significantly larger. The DFT
results also suggest that α-Li2IrO3 remains insulating within the
dimerized phase, in agreement with our high pressure electrical
resistance measurements. The detailed properties of the dimer-
ized phase are clearly a subject that requires further investigation.
It is intriguing to note that the energy level scheme and calculated
DOS for dimerized Li2RuO3

30 also bear strong similarities to the
QMO model.
Figure 5 presents a comparison of pressure scales identified by

our three primary experimental techniques. The pressure scales
identified by XAS are illustrated by the pressure dependence of
the Ir L2 and L3-edge white line intensities (Fig. 5a), the pressure
scales identified by XRD are illustrated by the evolution of the Ir-Ir
bond lengths (Fig. 5b), and the pressure scales identified by RIXS
are illustrated by the evolution of the inelastic peak positions
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Li2IrO3 can be investigated with density functional theory calcula-
tions (GGA+ SOC+ U, with Hubbard U= 2.0 eV and Hund’s J=
0.5 eV) performed using the experimental crystal structures deter-
mined at a ambient, b P= 0.1 GPa, c P= 2.8 GPa, and d P= 5.2 GPa.
The solid curve represents the full DOS, while the shaded area
represents the contribution due to the Ir electrons. These calcula-
tions demonstrate that the electronic band structure of α-Li2IrO3 is
very sensitive to applied pressure, with substantial changes to the
DOS emerging even at 0.1 GPa. Although the size of the insulating
gap is reduced with applied pressure, the system remains insulating
through the collapse of the Jeff= 1/2 ground state (P ≤ 0.1 GPa) and
the structural phase transition at P ~3 GPa. The overlap between
peaks in the DOS increases significantly within the dimerized
triclinic phase (P= 5.2 GPa)

Pressure-driven collapse of the relativistic electronic ground
JP Clancy et al.

4

npj Quantum Materials (2018)  35 Published in partnership with Nanjing University



which correspond to energies of the intra-t2g transitions (Fig. 5c).
Taken in combination, these measurements point towards the
following four distinct regimes:

(1) P≲ 0.1 GPa—characterized by a high branching ratio,
undistorted honeycomb lattice, and 2 peak RIXS spectrum.
These properties are consistent with a localized relativistic
Jeff= 1/2 ground state, as has generally been assumed for α-
Li2IrO3 under ambient pressure conditions.

(2) 0.1 GPa ≲ P ≲ 2 GPa—characterized by a low branching
ratio, slightly distorted honeycomb lattice, and 2 peak RIXS
spectrum. The drop in branching ratio implies a breakdown
of the relativistic Jeff= 1/2 ground state, and the energy
level scheme can be explained in terms of either a localized
pseudospin S= 1/2 model32 or an itinerant QMO model.9

The localized S= 1/2 picture appears to be favored by the
relatively small change in bandwidth predicted by DFT.

(3) 2 GPa≲ P≲ 3 GPa—characterized by a low branching ratio,
slightly distorted honeycomb lattice, and 3 peak RIXS
spectrum. The evolution of the RIXS spectrum can no

longer be explained in terms of a purely localized model,
and is most naturally attributed to the development of an
itinerant QMO-like state.

(4) P≳ 3 GPa—characterized by a low branching ratio, highly
distorted honeycomb lattice, and 3 peak RIXS spectrum. The
large distortion of the crystal structure points towards the
development of a dimerized ground state. DFT calculations
predict a breakdown of the QMO-like state, and the energy
level scheme appears similar to the dimerized molecular
orbital state of Li2RuO3.

30

In summary, we present compelling experimental evidence of a
pressure-driven collapse of the localized Jeff= 1/2 relativistic
electronic ground state in the honeycomb lattice iridate α-Li2IrO3.
Under the application of modest hydrostatic pressure, our
complimentary x-ray diffraction and spectroscopy data reveals a
structural distortion which coincides with the development of a
new electronic ground state; one that is dominated by non-cubic
crystal electric field effects rather than strong spin-orbit coupling.
These results show that the Jeff= 1/2 state found in α-Li2IrO3 at
ambient pressure is extremely fragile, since it can be disrupted by
a remarkably small applied pressure of 0.1 GPa. Such fragility of
the relativistic ground state could have important implications for
the understanding of pressure-driven magnetic transitions in
other Kitaev magnets.

METHODS
Experimental Methods
X-ray absorption spectroscopy measurements were performed using the
Hard X-Ray MicroAnalysis (HXMA) beamline 06ID-1 at the Canadian Light
Source. The data were collected in fluorescence yield detection mode,
using a 32 element Ge detector. The incident energy was selected using a
Si (111) monochromator, and the higher harmonic contributions were
suppressed by a combination of Rh-coated mirrors and a 50% detuning of
the wiggler.
X-ray powder diffraction measurements were performed using HXMA at

the CLS. The data were collected with angle dispersive techniques,33 using
high energy x-rays (Ei= 24.35 keV, λ= 0.509176 Å) and a MAR345 image
plate detector. Full Rietveld refinements were performed using the GSAS
software package.34

Resonant inelastic X-ray scattering measurements were performed using
the MERIX spectrometer on beamline 30-ID-B at the Advanced Photon
Source. A diamond (111) primary monochromator, silicon (220) secondary
monochromator, and spherical (2 m radius) diced silicon (844) analyzer
were used to produce a high flux, medium resolution instrument
configuration. The overall energy resolution [full width at half maximum
(FWHM)] in this configuration was 110meV. In order to minimize the elastic
background intensity, measurements were carried out in horizontal
scattering geometry with a scattering angle close to 2θ= 90°.
All measurements were performed at room temperature. Loose powder

samples were loaded into a diamond anvil cell, using either panoramic
(XAS, RIXS) or transmission (XRD) cell geometries. The pressure was tuned
with a precision of ±0.2 GPa using the R1 fluorescent line from a ruby chip
placed inside the sample space. To ensure reproducibility, high pressure
measurements were repeated using a series of different pressure
transmitting media. XAS measurements were carried out using low
viscosity silicone fluid, XRD measurements were carried out using high
viscosity silicone fluid, nitrogen gas, and water, and RIXS measurements
were carried out using neon gas. Over these pressure ranges, all four
pressure transmitting media are expected to deliver reasonable, quasi-
hydrostatic performance. The reversibility of the pressure-induced changes
was verified by performing measurements at partial and full pressure
release after the highest pressure data points had been collected. Due to
the presence of hysteresis effects associated with the first order structural
transition at 3 GPa, all measurements presented here have been obtained
under increasing pressure conditions (unless explicitly stated otherwise).

First Principles Calculations
Density functional theory (DFT) calculations were carried out within the
local (spin) density approximation [L(S)DA] using the Full Potential Local
Orbital band structure Package (FPLO).35 A k-mesh of 6 × 6 × 6 k-points in
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Fig. 5 A comparison of major pressure scales in α-Li2IrO3 identified
by XAS, XRD, and RIXS. a Pressure dependence of the Ir L2 and L3
edge white line intensity obtained from XAS. b Pressure depen-
dence of the Ir-Ir bond lengths determined from XRD. c Pressure
dependence of the inelastic peak positions (or intra-t2g transition
energies) determined from RIXS. The experimental data highlights
four different regimes, which we attribute to: a localized Jeff= 1/
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the whole Brillouin zone was employed. In order to account for correlation
effects in the Ir 5d-shell we adopted the L(S)DA+ U scheme. Due to the
rather sizable spin-orbit interaction of the Ir atoms the full relativistic four-
component Dirac scheme was used.
Similar to other iridates, the LDA results suggest a metallic state. To

obtain an insulating ground state, one needs to take into account strong
correlations in mean field approximation (LDA+ U). We introduce a
Hubbard U= 2.0 eV and Hund’s coupling of J= 0.5 eV for the Ir 5d-shell.
In order to extract theoretical values for the Ir L3/L2 branching ratio, the

quantity which is experimentally probed by XAS, ab initio calculations were
performed using many-body quantum chemistry methods. These calcula-
tions were performed on a finite cluster of atoms consisting of one IrO6

reference octahedron, four nearest-neighbor (NN) IrO6 octahedra, and
fifteen adjacent Li ions. The latter accounts for the finite charge
distribution in the immediate neighborhood of the central IrO6 unit. The
remaining part of the lattice was modeled by point charges fit to
reproduce the ionic Madelung potential in the cluster region. Energy-
consistent relativistic pseudopotentials and basis functions of quadruple-
zeta quality36 were used to describe the valence shell of the central Ir ion,
while all-electron basis sets of triple-zeta quality37 were applied for the
ligands corresponding to the reference octahedron. The NN Ir ions were
represented by closed-shell Pt4+ t62g species, using relativistic pseudopo-
tentials and triple-zeta basis functions for the valence shell.36 For the
oxygen sites corresponding to the NN octahedra, all-electron minimal
atomic-natural-orbital basis sets were employed.38 Total-ion effective
potentials along with a single s valence function were used for the
adjacent Li species.39

All computations were carried out with the molpro quantum chemistry
package.40 Multiconfigurational wave functions were first obtained using
the complete-active-space self-consistent-field (CASSCF) approach. The
CASSCF optimization was carried out for an average of the 2T2g ðt52gÞ,
4T1g ðt42ge1gÞ, 4T2g ðt42ge1gÞ, and 6A1g ðt32ge2gÞ states. In the final multireference
configuration-interaction (MRCI) calculations,41,42 single and double
excitations were allowed from the O 2p and Ir 5d orbitals of the reference
octahedron. All the aforementioned states entered the spin-orbit treat-
ment, carried out as described in Ref.43. The branching ratios were derived
at the MRCI level, following the procedure described in Ref.44.
Representative crystal structures determined from XRD measurements

at ambient pressure, 0.1 GPa, 0.6 GPa, and 2.8 GPa were used as input for
the quantum chemistry calculations. The resulting MRCI branching ratios
are plotted in the inset of Fig. 1 in the main text. It is clear that the
computed values capture the same qualitative trend as the experimental
data but systematically underestimate the observed branching ratios. It has
been shown that better agreement with the experimental data can be
obtained by including more excited states in the spin-orbit treatment,44

however, this aspect of the calculation falls beyond the scope of the
present study.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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