Tailored Synthesis of the Narrowest Zigzag Graphene Nanoribbon Structure by Compressing the Lithium Acetylide under High Temperature

Xiao Dong † Lijuan Wang † Kuo Li,*‡ Haiyan Zheng,*† Yajie Wang † Yue Meng † Haiyun Shu † Ho-kwang Mao,†§ Shaomin Feng,‖⊥ and Changqing Jin†

†Center for High Pressure Science and Technology Advanced Research, 100094 Beijing, China
‡HPCAT, X-Ray Science Division, Argonne National Lab, Argonne, Illinois 60439, United States
§Geophysical Lab, Carnegie Institution of Washington, Washington, D.C. 20015, United States
‖Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
⊥Collaborative Innovation Centre of Quantum Matter, Beijing 100190, China

ABSTRACT: Scientists are searching for the goal-directed methods to synthesize graphene nanoribbons (GNRs) with a particular edge type and width, which determines their electronic transport properties. A series of Li zigzag GNRs (ZGNRs) with different widths were predicted under high pressure with a stoichiometric ratio of Li_{n-1}C_{2n+1} which indicates a route to prepare ultranarrow GNRs. Here, with thermodynamics and ab initio Gibbs free-energy calculations by quasi-harmonic approximation, we investigated the phase stabilities of the Li GNR compounds under high pressure and high temperature. We have also identified Li graphene LiC_{n+1} (n = ∞) and Li polycene LiC_{2n} (n = 2) experimentally at the predicted pressure and temperature conditions using in situ X-ray diffraction, which can be recognized as the two end members of Li_{n-1}C_{2n} with the widest and narrowest ZGNR structures. High temperature and the temperature gradient increased the degree of polymerization and facilitated the formation of wider GNR or carbon slices. This suggests that by controlling temperature and pressure, we may get ultranarrow Li ZGNRs composed of a limited number of parallel carbon chains, such as 3- or 4-zigzag GNR, which is ready to be protonated or functionalized to form atomically ordered ZGNRs.

INTRODUCTION

Graphene nanoribbons (GNRs), defined as strips of graphene, exhibit exceptional electronic, optical, and magnetic properties.1–3 The quantum confinement nature of GNRs offers tunable band gaps, which can be modified by the width and edge structure (zigzag, armchair, or mixed).4,5 Among the GNRs, the ultranarrow GNRs, constructed by several parallel carbon chains, have band gaps comparable to typical semiconductors and have potential applications in high-performance field-effect transistors.5–9 Currently, the ultranarrow GNRs can only be controllably synthesized by “bottom-up” chemical methods, instead of “top-down” methods such as cutting and unzipping the graphite or carbon nanotubes.10–12 The “bottom-up” approach can control and modify the width and edge structure at the atomic scale, and the typical reaction is an aryl–aryl coupling, followed by cyclodehydrogenation.13 However, such reactions are severely limited by the solubility of oligophenylene, as well as the reactivity and regioselectivity.14–17 Only appropriate precursors can scalably react to produce GNRs and their products are typically armchair GNRs or coved zigzag GNRs (ZGNRs), as reviewed in the literature.18,19 For ideal ZGNRs, there are very few examples, including the 6-ZGNR constructed by six zigzag chains20 and 2-ZGNR (polyacenes).21–23 As the narrowest ZGNR, polycene is even more difficult to be synthesized, and the longest pure polycene is heptacene ([7]ac).21 Even if including those stabilized by the matrix or surface, the longest polycene has only 11 hexagonal rings (undecacene, [11]ac).24 Because the electronic properties of ultranarrow ZGNRs are significantly affected by the edge states, precise synthesis with clean, easily modified, and designed edges is of great interest, and the synthesis techniques still need to be developed.

Carbide is recognized as an important precursor to synthesize novel carbon allotropes, such as graphene, nano-
tubes, and nanodiamonds.25 Inspired by several successful synthesized silicon and germanium allotropes from the metal silicide or germanide,26 pure novel carbon allotropes can be expected after leaching the metal atoms from specific metal carbides. Theoretically, carbon atoms in metal carbides can form a chain, ribbon, graphene sheet, and three-dimensional structure under high pressure.27–30 Among these, several lithium ZGNRs were predicted, such as Li$_2$C$_2$ (ribbon, Cmcn), Li$_n$C$_{2n}$, and Li$_n$C$_{2n+1}$ (Li$_n$C$_n$).29 These compounds have a common structural feature, that is, carbon ribbon constructed by antiphase parallel zigzag chains. On this basis, a broad range of compounds which have a general formula Li$_n$C$_{2n+1}$ ($n = 1, 2, \ldots$) can be proposed (Figure 1). For example, Li$_2$C$_2$ (chain), Li$_4$C$_5$ and Li$_3$C$_3$ contain 1, 2, and 3 chains, respectively (Figure 1). These ZGNRs are stacked perpendicularly to their planes, with Li sandwiched between two six-membered rings of planes, with Li sandwiched between two six-membered rings of (Figure 1).

Thus, following this rule, we can expect zigzag ribbon structures with any width, from a chain ($n = 1$) to sheet ($n = \infty$), which in principle have infinite length and identical edges. In our previous study, some polycarbide anions were identified when compressing Li$_2$C$_2$ into an amorphous state under room temperature.31 To obtain the predicted crystalline samples with regular ZGNRs, multidimensional pressure–temperature composition space needs to be explored theoretically in advance. So far, all theoretical high-pressure investigations have been conducted at zero temperature, ignoring the temperature effects.27–30 Actually, the temperature not only determines the TS term where T is the temperature and S is the entropy in Gibbs energy but also affects volumes (V) and energies (E), that is, E, TS, and PV (P represents the pressure) terms are coupled, which can affect the phase stability and chemical reactions. Here, we employed quasi-harmonic approximation (QHA) theoretical calculations and high-pressure high-temperture (HPHT) experiments to reveal the phase transition tendency of the Li–C system under high temperature and high pressure. Several successful examples show the correction and universality of QHA for the HPHT situation.32–34 The lithium graphenide Li$_2$C$_2$ and lithium polycenide Li$_n$C$_n$ (ZGNRs $n = \infty$ and 2, respectively) were predicted under HPHT and then confirmed by in situ X-ray diffraction (XRD). Our research indicates that HPHT synthesis is an effective method to construct an ultranarrow GNR structure with defined edges and widths.

![Figure 1. Predicted crystal structures of Li$_n$C$_{2n}$ ($n = 1, 2, \ldots$). The black and purple spheres represent the carbon and lithium atoms, respectively.](image)

COMPUTATIONAL AND EXPERIMENTAL METHODS

Structure relaxations were performed using density functional theory (DFT) within the Perdew–Burke–Ernzerhof (PBE) functional25 in the framework of the all-electron projector augmented wave (PAW) method,35 as implemented in the VASP code.35 We used a plane-wave kinetic energy cutoff of 700 eV, and the Brillouin zone was sampled with a resolution of $2\pi \times 0.03$ Å$^{-1}$, which showed excellent convergence of the energy differences, stress tensors, and structural parameters.

The variable compound evolutionary algorithm USPEX,38 used here for predicting new stable structures, searches for the lowest-enthalpy structures at a given pressure. Structure relaxations were performed using DFT within the PBE functional in the framework of the all-electron PAW method, as implemented in the VASP code. The first generation of structures was created randomly. All structures were relaxed at constant pressure and 0 K, and the enthalpy was used as fitness. The energetically worst structures (40%) were discarded and a new generation was created, 30% randomly and 70% from the lowest-enthalpy structures through heredity, lattice mutation, and transmutation. For the QHA calculation, phonon calculations were performed for all promising structures using the PHONOPY code.39 The super cells of $3 \times 3 \times 3, 2 \times 2 \times 2, 2 \times 2 \times 4, 2 \times 2 \times 2, 1 \times 5 \times 4, 3 \times 3 \times 2, 2 \times 3 \times 1$, and $4 \times 4 \times 3$ are used for C, Li$_2$C$_2$, Li$_4$C$_3$, Li$_6$C$_4$, Li$_n$C$_n$, Li$_4$C$_5$, Li$_6$C$_6$, and Li$_8$C$_8$, respectively. Each structure is checked to have no imaginary phonon frequencies from 15 to 40 GPa. For each structure, phonons were computed at 31 different volumes to get the equilibrium volume and predict the Gibbs free energy. The Raman frequencies of the lithium carbides were calculated by vasp_raman.py at 27 GPa.40

The Li$_2$C$_2$ sample was synthesized from the stoichiometric mixture of the Li metal and graphite powder, which was sealed inside a tantalum tube in a glovebox. The tube was then sealed inside an evacuated quartz tube and heated at 800 °C for 12 h. Phase analysis was performed using powder XRD on a Bruker D8 ADVANCE diffractometer (Cu Kα radiation), and no significant impurities were detected (Figure S1). In situ HPHT XRD experiments were carried out at the 16-ID-B beamline at the Advanced Photon Source (APS), Argonne National Laboratory. A diamond anvil cell (DAC) with a diamond culet size of 300 μm in diameter was used to apply pressure. Tungsten gaskets were preindented to a thickness of 30 μm, and the center holes with 180 μm diameters were drilled to act as the sample chamber. Li$_2$C$_2$ powder was loaded in a glovebox, and Ar was loaded to improve thermal insulation and quasi-hydrostatic pressure conditions. Ruby fluorescence was used for pressure calibration.41 After Ar was loaded, the sample was checked using Raman spectroscopy and was proved to be Li$_4$C$_3$.33 Then, it was compressed to 27.5 GPa for the HPHT experiments. Another DAC was prepared by using the above-described method and was compressed to 36.5 GPa for the HPHT experiments. To generate high temperatures, the samples were heated on both sides using an infrared laser. The temperature from each side was estimated by collecting the emitted thermal radiation, correcting for the optical system response and fitting the spectral data to Planck’s equation. The temperatures used were recorded from the upstream side of the DAC. The X-ray patterns were collected during laser...
heating using a CCD detector calibrated with a CeO$_2$ standard sample. The wavelength of the incident X-ray was 0.4066 Å. The preliminary data were reduced using the Dioptas program, and the background of the XRD patterns was subtracted. After the in situ XRD experiment, Raman spectra were measured at room temperature without changing the pressure. The wavelength of the incident laser is 488 nm.

Results and Discussion

First, we used USPEX38 to predict the thermodynamically stable Li–C phases and obtain the convex hull at 0 K under 27.5 and 36.5 GPa, respectively (Figure 2a,b), which is consistent with the literature.29 Li$_2$C$_3$ and Li$_3$C$_4$ are predicted to be stable at 27.5 and 36.5 GPa, respectively, at 0 K, and Li$_2$C$_2$ is stable at 27.5 GPa. Their crystal structures and phonon spectra are also presented in Table S1 and Figure S2, respectively, with no imaginary frequency discovered. Then, we used the QHA method to study the Gibbs free energies of all candidate phases including C, LiC$_2$, Li$_2$C$_3$, Li$_3$C$_4$, Li$_2$C$_2$, and Li$_4$C$_3$, and Li$_6$C$_3$, to evaluate their thermodynamic stabilities at HPHT. As shown in Figure 2, both the convex hulls at 27.5 and 36.5 GPa vary significantly from 0 to 2500 K. With increasing temperature, LiC$_2$ becomes more stable, whereas Li$_2$C$_2$ is less stable.

On the basis of Gibbs free energies calculated under HPHT, we summarize the phase diagram of the carbon-rich phases and obtain the convex hull line. The open symbols represent metastable phases. The solid symbols represent thermal stable phases, that is, on the convex hull line. The orange line represents the decomposition line of 6Li$_3$C$_4$ = 7Li$_2$C$_3$ + Li$_4$C$_3$, whereas the red line represents the decomposition line of 2LiC$_2$ = Li$_2$C$_3$ + C. In zones I and III, LiC$_2$ is stable, and in zones II and IV, Li$_2$C$_2$ is stable.

![Figure 3. Calculated phase diagram of LiC$_2$, Li$_2$C$_3$, and Li$_3$C$_4$ by QHA. The red, gray, and orange shadings represent the thermodynamic stable P–T regions of LiC$_2$, Li$_2$C$_3$, and Li$_3$C$_4$, respectively. The decomposition lines of LiC$_2$ and Li$_2$C$_3$ are projected on the P–T plane (red and orange line). The orange line represents the decomposition line of 6Li$_3$C$_4$ = 7Li$_2$C$_3$ + Li$_4$C$_3$, whereas the red line represents the decomposition line of 2LiC$_2$ = Li$_2$C$_3$ + C.](image)

This phenomenon results from the structural features of these Li GNRs. For Li$_2$C$_3$, carbon atoms are connected along the ribbon by C–C covalent bonds. In the other two directions perpendicular to the ribbon, the atoms are connected by the ionic interactions between the GNR and Li cations. For comparison, LiC$_2$ (Li graphenide) has a 2D covalent-bond sheet and ionic interaction between Li and the graphene sheet in the third direction.33 Compared to ionic bonds, covalent bonds are harder to stretch with temperature, so LiC$_3$ has a smaller thermal expansion coefficient and a smaller volume increase at high temperature and becomes energetically favored under high pressure.

To confirm these predicted structures, we conducted in situ HPHT XRD experiments. Crystalline powder Li$_2$C$_2$ was compressed to 27.5 and 36.5 GPa, respectively, at room temperature and heated up to 40 GPa. Li$_2$C$_2$ (Li polyacenide) will decompose at high temperature. The decomposition temperature is 1516 K at 20 GPa and linearly increases to 2665 K at 40 GPa.

Thus, the two decomposition lines of LiC$_2$ and Li$_2$C$_3$ divide the phase diagram into four zones. At low temperature (zone IV), Li$_3$C$_4$ is stable and LiC$_2$ is decomposed, which is consistent with previous theoretical calculations.29 At low pressure and high temperature (zone II), both Li$_2$C$_2$ and LiC$_2$ decompose. Under high pressure and intermediate temperature, Li$_2$C$_2$ and LiC$_2$ coexist (zone III). The last zone (zone I) is for intermediate pressure and high temperature, where Li$_2$C$_2$ decomposes and LiC$_2$ is stable. The QHA calculations suggest that high temperature promotes polymerization and stabilizes wider GNR or carbon slices.

![Figure 4a. Crystal structure of LiC$_2$.](image)
After cooling down, the peaks are maintained, indicating that the new phase is stable at room temperature. By comparing the diffraction patterns to those of the predicted phases, we found that the predicted Li$_3$C$_4$ (Immm) phase fits the XRD pattern (36.5 GPa and 2010 K) very well. The Rietveld refinement results are shown in Figure 5b, and the lattice parameters are $a = 11.4944$ Å, $b = 3.0525$ Å, and $c = 2.464$ Å. As shown in Figure 6a, the carbon atoms in Li$_3$C$_4$ polymerize into polycenide, the nanoribbon with two zigzag chains, which is referred to as the first-order structural unit. The Li cations are closely fitted between the (half) six-membered rings of neighboring ribbons, connecting the ribbons together and forming a second-order structural unit (the purple region in Figure 6a), which is neutral in charge. These Li cations form rectangular lattices as shown in the dashed line in Figure 6a. When the second-order structural units are stacked, the Li cations between the (half) six-membered rings are against the centers of the neighboring Li rectangles, that is, the negatively charged secondary carbon is located on the edge of GNR. Actually, this Li–C (1.957 Å) distance is even shorter than the nearest Li–Li distance (2.301 Å) between the neighboring second-order units (Figure 6a), which is likely to result from significant electrostatic attraction and hence stabilizes the whole crystal.

Nominally, the C atom in Li$_3$C$_4$ has an oxidation state of 3/4 supposing Li keeps +1. Theoretical calculation shows that the carbon atoms on the edge and in the middle have Bader charges of -0.76 and -0.45, respectively, whereas the Li atoms have Bader charges of $+0.81$. Li$_3$C$_4$ is predicted to be metallic with a conductive charged GNR, as shown in Figure 6b. The nonintegral oxidation state of carbon suggests an important rule under high pressure: effective stacking becomes more important compared to a traditional stoichiometry/integer oxidation state.

A metastable Li$_2$C$_2$ polycenide GNR phase was also predicted, as shown in Figure 7. It has a similar second-order structural unit with Li$_3$C$_4$, but with another layer of Li between them (indicated by the dashed circles in Figure 7), which may be responsible for the instability. Its fragment was identified when compressed under room temperature. By comparing the structural similarities of this Li$_2$C$_2$ and Li$_3$C$_4$, we propose the following reaction process: C$_2$ in Li$_2$C$_2$ tends to polymerize under external pressure and forms ZGNR fragments in amorphous Li$_2$C$_2$ at room temperature. When heated up, the fragments start to connect to form ZGNRs, 1/4 of Li is excluded, and the Li GNRs are crystallized in the most energetically preferred structure, Li$_3$C$_4$.

It is worth noting that the predicted Li$_4$C$_3$ was not observed in our experiment. From thermodynamic rules, when Li$_3$C$_4$ is thermodynamically stable, Li$_4$C$_3$ should not appear in the...
sample with Li/C = 1:1. However, at 27.5 GPa, we observed LiC₂, whose composition deviates even further away from 1:1. This is most likely due to compositional segregation. A significant amount of Li atoms may migrate outside the laser irradiation (and hence incident X-ray beam), and the composition left is carbon-rich. The possible reason of migration may include temperature and pressure gradient, which is still under investigation.

We also characterized the samples using Raman spectroscopy. The sample under 27.5 GPa does not show obvious features but high background (Figure 8). The sample under 36.5 GPa shows a series of peaks below 1300 cm⁻¹, with the strongest peak at ~1288 cm⁻¹. We calculated the Raman spectra of several lithium carbides and selected those with peaks in the range of 1200–1350 cm⁻¹ for comparison. Most of these carbides are polycarbides with ribbon (Li₂C₂ ribbon, Li₂C₃ ribbon, Li₃C₁, and LiC₂) or chain structures (Li₂C₂ zigzag, LiC₃), and this peak most likely indicates the ribbon structure. Among them, Li₂C₃ is the best candidate, though other phases cannot be excluded. This supports our discovery using in situ XRD. For LiC₂, only one peak at 1520 cm⁻¹ is predicted, and it is not surprising that it was not observed because LiC₂ is metallic.

In the current experiment, we tested two P–T points and observed the two members of Liₙ₊₁C₂ₙ with n = 2 and ∞. We can expect more Li ZGNRs with various widths, by testing more points between 27.5 and 36.5 GPa and between 300 and 2200 K and by controlling the ratio of Li and carbon, temperature gradient, time, rate of heating, and so on. On one hand, the ZGNRs in Liₙ₊₁C₂ₙ have identical edges. When lithium is removed, pure ultranarrow ZGNRs would be obtained. On the other hand, these Li GNs have negative charges on the ribbons, which suggests that they are very good nucleophilic reagents and very easy to react with protic solvents including water and alcohol or other reagents with a positive charge. This will be a useful method to obtain a neutral ZGNR with controlled atomic width and will also be a method to synthesize functionalized GNRs.

In conclusion, we have theoretically predicted and experimentally synthesized two phases containing ZGNR structures, graphene compounds LiC₂ and polycarbons Li₃C₄ by subjecting Li₂C₂ under HPHT conditions using the technique of laser-heated DAC. Their crystal structures under HPHT have been determined as closely packed ZGNR and Li⁺, in agreement with ab initio Gibbs free-energy calculation by QHA. On the basis of the calculation, several Li ZGNRs with a stoichiometric ratio of Liₙ₊₁C₂ₙ have also been investigated, which are the intermediate phases between lithium polycarbons Li₂C₃ and lithium graphenides LiC₂. It is expected that with precise control of temperature and pressure, we can obtain lithium ZGNRs with an expected width, which will shed light on the “bottom-up” synthesis of ZGNRs with atomic ordering and a controlled width.

ASSOCIATED CONTENT

<fig>Figure 7. Crystal structure of Li₂C₂-Cmcm-ribbon phase.⁴⁹</fig>

<fig>Figure 8. Raman spectra of the heated Li₂C₂ samples (LiC₂ and Li₃C₄) under high pressure. The Raman peak of the diamond is masked, and the peaks marked by asterisks are from the anvils.</fig>

36.5 GPa shows a series of peaks below 1300 cm⁻¹, with the strongest peak at ~1288 cm⁻¹. We calculated the Raman spectra of several lithium carbides and selected those with peaks in the range of 1200–1350 cm⁻¹ for comparison. Most of these carbides are polycarbides with ribbon (Li₂C₂ ribbon, Li₂C₃ ribbon, Li₃C₁, and LiC₂) or chain structures (Li₂C₂ zigzag, LiC₃), and this peak most likely indicates the ribbon structure. Among them, Li₂C₃ is the best candidate, though other phases cannot be excluded. This supports our discovery using in situ XRD. For LiC₂, only one peak at 1520 cm⁻¹ is predicted, and it is not surprising that it was not observed because LiC₂ is metallic.

In the current experiment, we tested two P–T points and observed the two members of Liₙ₊₁C₂ₙ with n = 2 and ∞. We can expect more Li ZGNRs with various widths, by testing more points between 27.5 and 36.5 GPa and between 300 and 2200 K and by controlling the ratio of Li and carbon, temperature gradient, time, rate of heating, and so on. On one hand, the ZGNRs in Liₙ₊₁C₂ₙ have identical edges. When lithium is removed, pure ultranarrow ZGNRs would be obtained. On the other hand, these Li GNs have negative charges on the ribbons, which suggests that they are very good nucleophilic reagents and very easy to react with protic solvents including water and alcohol or other reagents with a positive charge. This will be a useful method to obtain a neutral ZGNR with controlled atomic width and will also be a method to synthesize functionalized GNRs.

In conclusion, we have theoretically predicted and experimentally synthesized two phases containing ZGNR structures, graphene compounds LiC₂ and polycarbons Li₃C₄ by subjecting Li₂C₂ under HPHT conditions using the technique of laser-heated DAC. Their crystal structures under HPHT have been determined as closely packed ZGNR and Li⁺, in agreement with ab initio Gibbs free-energy calculation by QHA. On the basis of the calculation, several Li ZGNRs with a stoichiometric ratio of Liₙ₊₁C₂ₙ have also been investigated, which are the intermediate phases between lithium polycarbons Li₂C₃ and lithium graphenides LiC₂. It is expected that with precise control of temperature and pressure, we can obtain lithium ZGNRs with an expected width, which will shed light on the “bottom-up” synthesis of ZGNRs with atomic ordering and a controlled width.

ASSOCIATED CONTENT

<fig>Figure 7. Crystal structure of Li₂C₂-Cmcm-ribbon phase.⁴⁹</fig>

<fig>Figure 8. Raman spectra of the heated Li₂C₂ samples (LiC₂ and Li₃C₄) under high pressure. The Raman peak of the diamond is masked, and the peaks marked by asterisks are from the anvils.</fig>

36.5 GPa shows a series of peaks below 1300 cm⁻¹, with the strongest peak at ~1288 cm⁻¹. We calculated the Raman spectra of several lithium carbides and selected those with peaks in the range of 1200–1350 cm⁻¹ for comparison. Most of these carbides are polycarbides with ribbon (Li₂C₂ ribbon, Li₂C₃ ribbon, Li₃C₁, and LiC₂) or chain structures (Li₂C₂ zigzag, LiC₃), and this peak most likely indicates the ribbon structure. Among them, Li₂C₃ is the best candidate, though other phases cannot be excluded. This supports our discovery using in situ XRD. For LiC₂, only one peak at 1520 cm⁻¹ is predicted, and it is not surprising that it was not observed because LiC₂ is metallic.

In the current experiment, we tested two P–T points and observed the two members of Liₙ₊₁C₂ₙ with n = 2 and ∞. We can expect more Li ZGNRs with various widths, by testing more points between 27.5 and 36.5 GPa and between 300 and 2200 K and by controlling the ratio of Li and carbon, temperature gradient, time, rate of heating, and so on. On one hand, the ZGNRs in Liₙ₊₁C₂ₙ have identical edges. When lithium is removed, pure ultranarrow ZGNRs would be obtained. On the other hand, these Li GNs have negative charges on the ribbons, which suggests that they are very good nucleophilic reagents and very easy to react with protic solvents including water and alcohol or other reagents with a positive charge. This will be a useful method to obtain a neutral ZGNR with controlled atomic width and will also be a method to synthesize functionalized GNRs.

In conclusion, we have theoretically predicted and experimentally synthesized two phases containing ZGNR structures, graphene compounds LiC₂ and polycarbons Li₃C₄ by subjecting Li₂C₂ under HPHT conditions using the technique of laser-heated DAC. Their crystal structures under HPHT have been determined as closely packed ZGNR and Li⁺, in agreement with ab initio Gibbs free-energy calculation by QHA. On the basis of the calculation, several Li ZGNRs with a stoichiometric ratio of Liₙ₊₁C₂ₙ have also been investigated, which are the intermediate phases between lithium polycarbons Li₂C₃ and lithium graphenides LiC₂. It is expected that with precise control of temperature and pressure, we can obtain lithium ZGNRs with an expected width, which will shed light on the “bottom-up” synthesis of ZGNRs with atomic ordering and a controlled width.
research was performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under award no. DE-NA0001974, with partial instrumentation funding by NSF. Y.M. acknowledges the support of DOE-BES/DMSE under award no. DE-FG02-99ER45775. APS is supported by DOE-BES, under contract no. DE-AC02-06CH11357. The calculation was performed on the TianheII supercomputer at Chinese National Supercomputer Center in Guangzhou.

REFERENCES

