Synthesis of mesoporous orthorhombic LiMnO$_2$ cathode materials via a one-step flux method for high performance lithium-ion batteries

To cite this article: Wenming Tong et al 2018 Mater. Res. Express 5 065511

View the article online for updates and enhancements.

Related content

- Template-free synthesis of highly porous V2O5 cuboids with enhanced performance for lithium ion batteries
  Cheng Zhang, Guozhao Fang, Caiwu Liang et al.

- Novel secondary assembled micro/nano porous spheres ZnCo2O4 with superior electrochemical performances as lithium ion anode material
  Haowen Liu and Qihong Hu

- Facile fabrication of 3D porous MnO@N3S/CNT architecture as advanced anode materials for high-performance lithium-ion battery
  Junyong Wang, Qinglin Deng, Mengjiao Li et al.
Synthesis of mesoporous orthorhombic LiMnO₂ cathode materials via a one-step flux method for high performance lithium-ion batteries

Wenming Tong¹, Qingxin Chu¹,²,³, Yujia Meng¹, Xiaofeng Wang¹, Bin Yang³, Juanjuan Gao³, Xudong Zhao¹ and Xiaoyang Liu¹,²,⁴, 5

¹ State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
² College of Sciences, Shenyang Agricultural University, Shenyang 110161, People’s Republic of China
³ Center for High Pressure Science and Technology Advanced Research, Changchun 130012, People’s Republic of China
⁴ Author to whom any correspondence should be addressed.
E-mail: chuqx@syau.edu.cn and liuxy@jlu.edu.cn

Keywords: mesoporous materials, orthorhombic LiMnO₂, flux method, lithium ion battery

Abstract
Mesoporous orthorhombic LiMnO₂ has been directly fabricated by a one-step flux method in this work. Benefiting from the unique mesoporous structure, the orthorhombic LiMnO₂ prepared through calcinating the mixture of flux LiOH·H₂O and Mn₂O₃ with various Li/Mn molar ratios shows enhanced lithium storage properties. When used as the cathode for lithium ion battery, the mesoporous orthorhombic LiMnO₂ has been found to exhibit a maximum discharge capacity of 191.5 mAh g⁻¹ and a high reversible capacity of 162.6 mAh g⁻¹ (84.9% retention) after 50 cycles at a current density of 0.1 C rate. These results demonstrate its potential application in high performance lithium-ion batteries.

1. Introduction
Lithium ion batteries (LIBs) have been extensively investigated as one of the most potential electric energy storage devices because of their stable cycling lifespan, high energy density and environmental friendliness. They are promising power sources for portable electronic devices such as digital cameras, laptop computers, mobile phones, electric vehicles (EVs) and hybrid electric vehicles (HEVs) [1–4]. However, the performance improvement of LIBs still remains a challenge, which critically depends on the electrode materials [5]. Hence, it is urgently needed for the research and development of advanced electrode materials to meet the ever-increasing demands of the sustainable power sources in the modern electronics industry [6–9]. Among various electrode materials, novel carbon-based materials/composites including activated carbon aerogels [10], hierarchical porous carbon [11] and graphene@Fe₃O₄ dots/amorphous carbon [12], have been proposed as potential anode materials to substitute traditional commercial graphite because of their higher specific surface area, superior specific capacity, good electrical conductivity and excellent electrochemical stability. As the cathode for LIBs, the traditional and commercial LiCoO₂ cannot fulfill the requirement of high power applications such as HEVs and EVs in view of its limited specific capacity and poor capacity retention upon long cycling. As a result, other cathodes such as LiNi₀·₃Mn₁·₃O₄ [13], LiNi₀·₇₆Mn₀·₁₄Co₀·₁₆O₂ [14], LiMnO₂ [15] and LiVPO₄F/C [16], have been widely explored. Among them, LiMnO₂ is one of the most prospective candidates for its considerable advantages such as abundant Mn resources, intrinsic low cost, superior structural stability and environmental friendliness characteristics [17]. The theoretical discharge capacity of LiMnO₂ (285 mAh g⁻¹) is practically twice higher than that of spinel LiNi₁₀·₃O₄ (148 mAh g⁻¹) [18]. Usually, layered LiMnO₂ has two crystal structures: orthorhombic structure and monoclinic structure [19]. The monoclinic LiMnO₂ is less thermodynamically stable than the orthorhombic LiMnO₂ and is hard to obtain as well [20]. Therefore, orthorhombic LiMnO₂ has been intensively studied as the potential cathode material for LIBs.

Unfortunately, orthorhombic LiMnO₂ still suffers from huge volume expansion and structural strain during the charge-discharge process, resulting in a rapid decrease of specific capacity and poor cycling stability, which
2.1. Preparation of mesoporous orthorhombic LiMnO₂ cathode materials

Materials and reagents were of analytical grade and directly used as received without further purification. The synthesis of mesoporous orthorhombic LiMnO₂ was carried out by a one-step flux method using LiOH·H₂O and Mn₂O₃ as starting materials. In a typical synthesis, 15.75 mmol LiOH·H₂O and 7.5 mmol Mn₂O₃ with Li/Mn molar ratio of 1.05, were grounded homogeneously for 30 min in an agate mortar. Then the well-mixed powders were put into a tube furnace and calcined at 600 °C for 3 h under vacuum. After cooling down to room temperature, the product was washed with distilled water and then was dried at 60 °C in a oven overnight. The as-prepared sample was labeled as LMO-1. For comparison, LMO-2 sample was prepared with the same process mentioned as above except using 25 mmol LiOH·H₂O and 5 mmol Mn₂O₃ with Li/Mn molar ratio of 2.50. Moreover, LMO-3 sample was prepared with the same process mentioned as above except using 30 mmol LiOH·H₂O and 3 mmol Mn₂O₃ with Li/Mn molar ratio of 5.00.

2.2. Material characterizations

Powder x-ray diffraction (XRD) patterns were obtained from a Rigaku D/MAX 2550 diffractometer with Cu Kα radiation (λ = 1.5418 Å). Scanning electron microscopy (SEM) images were taken with a JEOI JSM-6700F microscope operating at 5 kV. Transmission electron microscopy (TEM) analysis and high resolution transmission electron microscopy (HRTEM) analysis were performed on a FEI Tecnai G2 F20 s-twin D573 transmission electron microscope with an acceleration voltage of 200 kV. The nitrogen adsorption-desorption measurements were carried out with a Micromeritics ASAP 2420 surface area analyzer by using Brunauer–Emmett–Teller (BET) method at 77 K. Pore size distribution plots were obtained from the desorption branch of the isotherms using the Barrett–Joyner–Halenda (BJH) model.

2.3. Electrochemical measurements

The electrochemical characteristics of the samples were evaluated using CR2025 coin cells. The working electrode was prepared by mixing the slurry of obtained orthorhombic LiMnO₂ active material, acetylene black and polyvinylidene fluoride (PVDF) binder with a weight ratio of 8:1:1 in N-methyl-2-pyrrolidone (NMP) solvent. After stirring for 5 h, the slurry was coated onto an aluminum foil substrate and dried at 120 °C for 13 h in a vacuum oven, followed by cutting into small disks as cathodes. The mass loading of the active material on the electrode was 1–2 mg cm⁻². Lithium metal was used as the counter electrode and Celgard 2400 microporous membrane was used as the separator. The electrolyte was 1 M LiPF₆ in EC/DEC (1:1 v/v). All CR2025 coin-type cells were assembled in an argon-filled glove box. The galvanostatic charge-discharge measurements were
carried out at room temperature with various current densities in the voltage range of 2.0–4.4 V by the LAND battery testing system (CT2001A).

3. Results and discussion

Figure 1 displays the XRD patterns of the as-synthesized LiMnO$_2$ samples. It can be seen that all the diffraction peaks can be basically indexed to the orthorhombic LiMnO$_2$ with a space group of $Pmnm$, which corresponds to JCPDS No. 35-0749. Moreover, it can be found that the diffraction peaks become more intense with the increase of Li/Mn molar ratios from 1.05 to 5.00, especially for the (110) peak, demonstrating higher crystallinity. The broader and weaker (110) peak can be observed for LMO-1 sample, which may be related to its smaller crystalline size and higher degree of disorder [28]. Furthermore, the higher full-width-at-half-maximum (FWHM) value of the (110) peak indicates that there are more stacking faults between Mn and Li sites [29], which directly affects the electrochemical characteristics. According to the literatures, the orthorhombic LiMnO$_2$ with a weak crystallinity, more stacking faults and smaller crystallites tends to exhibit a higher discharge capacity [30].

The morphology and structure of the orthorhombic LiMnO$_2$ samples have been further examined by SEM and TEM analyses. As shown in figure 2, the as-synthesized orthorhombic LiMnO$_2$ samples are assembled by closely packed primary nanocrystallites with irregularly shaped pores among them. The size of the primary nanocrystallites is approximately 20–30 nm in diameter. The average size of the aggregated primary nanocrystallites slightly becomes larger when the Li/Mn molar ratios increase from 1.05 to 5.00, as displayed in figures 2(a)–(c). This may be ascribed to the fact that the increase of the Li/Mn molar ratio dramatically accelerates the process of dissolution and recrystallization, leading to the formation of the larger crystallites [31]. To further demonstrate their detailed structures, the obtained orthorhombic LiMnO$_2$ samples were characterized by TEM. Figure 2(d) depicts the low magnification TEM image of LMO-1 sample. Notably, the obtained LMO-1 sample is consisted of aggregated primary nanoparticles of approximately 30 nm in diameter and their extremely rough surfaces are connected together to create a high inter-particle porosity. The representative high-resolution TEM image of the primary nanoparticles observed from the figure 2(d) inset indicates that the lattice fringe of the sample is 0.36 nm, corresponding to the (110) plane of the orthorhombic LiMnO$_2$. This result is in accordance with the XRD analysis.

The porous characteristics and specific surface areas of the as-synthesized LiMnO$_2$ samples were further explored by nitrogen adsorption-desorption measurements. Figures 3(a), (b) show the nitrogen adsorption-desorption isotherms and corresponding pore size distributions of the orthorhombic LiMnO$_2$ samples. It can be seen that the LMO-1 sample has a typical hysteresis loop and its N$_2$ adsorption quantity is much higher than that of other samples, as observed in figure 3(a), suggesting its abundant mesoporous structure. The BET specific surface areas of the LMO-1, LMO-2 and LMO-3 sample are 3.99 m$^2$ g$^{-1}$, 2.25 m$^2$ g$^{-1}$ and 1.82 m$^2$ g$^{-1}$, respectively. Figure 3(b) further confirms that the typical pore size of the LMO-1 sample is around 45 nm, which is in good agreement with the SEM and TEM analyses. The improved specific surface area and unique
The electrochemical performance of the LiMnO$_2$ samples for LIBs was further performed by the galvanostatic charge-discharge measurements. Figures 4(a), (b) present the charge-discharge profiles and cyclic performance of the orthorhombic LiMnO$_2$ samples. Cycling stability tests were carried out at a current density of 0.5 C in the voltage range of 2.0–4.4 V. As shown in figure 4(a), all of the orthorhombic LiMnO$_2$ samples...
display two distinct voltage plateaus at around 4 V and 3 V, which may be a result of phase transition during the cycling from orthorhombic LiMnO$_2$ to spinel phase. The different plateaus represent that Li$^+$ intercalates on different sites: tetrahedral site and octahedral site in the cycle-induced spinel LiMn$_2$O$_4$ [32]. From the charge and discharge profiles, it can be seen that the maximum discharge capacities of LMO-1, LMO-2 and LMO-3 sample are 190.0 mAh g$^{-1}$, 148.3 mAh g$^{-1}$ and 145.0 mAh g$^{-1}$, respectively. Clearly, the LMO-1 sample shows enhanced specific capacity, which may be ascribed to its unique small size and interconnected porous network architectures. As reported previously [33], the capacity loss of the orthorhombic LiMnO$_2$ materials was mainly due to the decrease of the length in the 3 V plateau, which might be predominantly caused by the collective Jahn-Teller distortion of the cycle-induced spinel phase [34]. Additionally, the dissolution of manganese could directly lead to defective spinels [35] and poor cycling performance. However, the charge-discharge curves of the LMO-1 sample show a longer and more flat 3 V plateau compared with those of other samples, which indicates that it is more stable and can better accommodate the volume changes resulting from the phase transformation during the charge-discharge process. The cycling stability of the orthorhombic LiMnO$_2$ samples was further investigated as the cathode for LIBs. As shown in figure 4(b), the reversible capacities of the LMO-1, LMO-2 and LMO-3 sample can be sustained at 146.3 mAh g$^{-1}$, 113.4 mAh g$^{-1}$ and 101.6 mAh g$^{-1}$ at a current density of 0.5 C after 100 cycles, corresponding with the retention rates of 77.0%, 76.5% and 70.1%, respectively. Figure 4(c) is the characteristic charge-discharge curves of the LMO-1 sample. The initial charge and discharge capacities of the LMO-1 sample are about 211.9 mAh g$^{-1}$ and 148.2 mAh g$^{-1}$ at a current density of 0.1 C, corresponding to the coulombic efficiency of 69.9%. As reported by Shu et al [36], the large irreversible capacity was attributed to the phase transition from the orthorhombic LiMnO$_2$ to spinel LiMn$_2$O$_4$. Moreover, a slowly increase in the length of the plateau at 3 V and 4 V with further cycling has been observed, suggesting that both the spinel-like phase and the Li$^+$ intercalation on tetrahedral sites have developed further. The discharge capacity of the LMO-1 sample can gradually reach the maximum value of 191.5 mAh g$^{-1}$ at the 14th cycle, of which the 3 V plateau representing Li intercalation on octahedral sites becomes the longest among all discharge cycles. The initial discharge capacity is lower than the maximum value at the first few cycles, which is attributed to the enhancement of Li$^+$ diffusivity in the host by the activation process [37]. After 50 cycles, the charge and discharge capacities of the LMO-1 sample can be sustained at 146.3 mAh g$^{-1}$, 113.4 mAh g$^{-1}$ and 101.6 mAh g$^{-1}$ at a current density of 0.5 C after 100 cycles, corresponding with the retention rates of 77.0%, 76.5% and 70.1%, respectively.
discharge capacities can be maintained at 171.8 mAh g\(^{-1}\) and 162.6 mAh g\(^{-1}\), corresponding to the coulombic efficiency of 94.6\%. To further investigate the application of the product in high power density devices, the rate cycling test of the LMO-1 sample was performed at current densities of 0.1 C, 0.2 C, and 0.5 C in the voltage range of 2.0–4.4 V. As displayed in figure 4(d), the initial discharge capacities of the LMO-1 sample are 148.2, 132.6, and 105.2 mAh g\(^{-1}\) at current densities of 0.1 C, 0.2 C, and 0.5 C, respectively. Then the discharge capacities gradually reach the maximum values of 191.5, 190.6 and 190.0 mAh g\(^{-1}\) at the 14th, 21th and 37th cycle, respectively. After 50 cycles, the discharge capacities of the LMO-1 sample still can be maintained at 162.6, 172.3 and 186.5 mAh g\(^{-1}\) at current densities of 0.1 C, 0.2 C and 0.5 C, suggesting its good cycling stability. It is noteworthy that when the current density is 0.5 C, the LMO-1 sample shows a lower initial capacity, longer activation time and much better cycling durability than that of 0.1 C and 0.2 C after 50 cycles. This can be ascribed to the fact that the LMO-1 sample may suffer from a ultrafast and incomplete charge-discharge process at a high rate and some residual lithium ions in the electrode materials have no sufficient time to finish the more complete intercalation and extraction process [38]. These results above reveal that the LMO-1 sample can be regarded as an excellent cathode material for LIBs.

4. Conclusions

In summary, mesoporous orthorhombic LiMnO\(_2\) has been successfully fabricated by a one-step flux method. After a series of thorough tests, such mesoporous orthorhombic LiMnO\(_2\) can deliver a initial discharge capacity of 148.2 mAh g\(^{-1}\) at a current density of 0.1 C. Then the specific capacity gradually increases to a maximum value of 191.5 mAh g\(^{-1}\) in the first few cycles, which may be attributed to the activation process of electrode materials. After 50 cycles, a high specific capacity of 162.6 mAh g\(^{-1}\) can be still achieved. The abundant mesoporous structure, improved specific surface area and optimal primary nanoparticle size of the orthorhombic LiMnO\(_2\) may be responsible for the superior lithium storage properties and good cycling stability. Notably, the successful fabrication of mesoporous orthorhombic LiMnO\(_2\) not only can offer a promising cathode material for advanced LIBs, but also will inspire the fabrication of high performance electrode materials for electrochemical energy storage applications.

Acknowledgments

We would like to gratefully acknowledge the support from the National Natural Science Foundation of China (Grants 21271082 and 21601127).

ORCID iDs

Xiaoyang Liu  
https://orcid.org/0000-0002-7128-8457

References

[3] Park K J, Choi M J, Maglia F, Kim S J, Kim K H, Yoon Chong S and Sun Y K 2018 High-capacity concentration gradient Li[Na\(_{0.865}\)Ni\(_{0.120}\)Co\(_{0.115}\)O\(_{2}\)]\(_{0.05}\)O\(_{2}\) cathode for lithium-ion batteries Adv. Energy Mater. 0 1703612
[4] Ariyoshi K, Yamamoto H and Yamada Y 2018 High dimensional stability of LiCoMnO\(_4\) as positive electrodes operating at high voltage for lithium-ion batteries with a long cycle life Electrochim. Acta 260 498–503
[5] Ullah A, Majid A and Rani N 2018 A review on first principles based studies for improvement of cathode material of lithium ion batteries J. Energy Chem. 27 219–37
[6] Sun Y, Cong H, Zan L and Zhang Y 2017 Oxygen vacancies and stacking faults introduced by low-temperature reduction improve the electrochemical properties of Li\(_x\)MnO\(_2\) nanobelts as lithium-ion battery cathodes ACS Appl. Mater. Interfaces 9 38545–55
[10] Yang X, Wei C and Zhang G 2016 Activated carbon aerogels with developed mesoporosity as high-rate anodes in lithium-ion batteries J. Mater. Sci. 51 5565–71

[13] Yin C, Zhou H, Yang Z and Li J 2018 Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 for lithium-ion batteries by the metal-organic framework method ACS Appl. Mater. Interfaces 10 13625–34

[14] Zheng J, Yan P, Estvez L, Wang C and Zhang J-G 2018 Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.8Mn0.1Co0.1O2 cathodes for lithium-ion batteries Nano Energy 49 538–48


[18] Yang F, Zhang Q, Hu X, Peng T and Liu J 2017 Preparation of Li-rich layered-layered type xLi2MnO3-(1-x)LiMnO2 nanorods and its electrochemical performance as cathode material for Li-ion battery J. Power Sources 353 323–32


[21] Xu H, Sun J and Gao L 2013 Hydrothermal synthesis of LiMn2O4 microcubes for lithium ion battery application Ionics 19 63–9


[25] Zhang H, Li Z, Yu S, Xiao Q, Lei G and Ding Y 2016 Carbon-encapsulated LiMnO2 spheres prepared using a polymer microgel reactor for high-power lithium-ion batteries J. Power Sources 301 376–85

[26] Li Y, Mei T, Gong H, Wei D, Xing Z, Zhu Y and Qian Y 2012 Synthesis of LiMn2O4 porous microsphere and its electrochemical behaviour as cathode material in lithium-ion batteries Micro Nano Lett. 7 439

[27] Lu J, Zhou C, Liu Z, Lee K S and Lu L 2016 LiMn2O4 cathode materials with large porous structure and radial interior channels for lithium ion batteries Electrochim. Acta 212 553–60


[32] Liu Q, Mao D, Zhang C and Huang F 2007 Phase conversion and morphology evolution during hydrothermal preparation of orthorhombic LiMnO2 nanorods for lithium ion battery application J. Power Sources 173 538–44


[38] Zaghib K, Goodenough J B, Mauger A and Julien C 2009 Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries J. Power Sources 184 1021–3