General 2.5 power law of metallic glasses

Qiaoshi Zeng,a,b,c,d,1 Yu Linb, Yijin Liue, Zhidan Zeng,b,d, Crystal Y. Shi,b, Bo Zhangf, Hongbo Loua, Stanislav V. Sinogeiki, Yoshio Konog, Curtis Kenney-Bensonb, Changyong Parkb, Wenge Yangg,d, Weihua Wangg, Hongwei Shenga,1 Ho-kwang Maaod,1,1 and Wendy L. Mabo,c

aCenter for High Pressure Science and Technology Advanced Research, Pudong, Shanghai 201203, People’s Republic of China; bDepartment of Geological Sciences, Stanford University, Stanford, CA 94305; cStanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025; dHigh Pressure Synergetic Consortium, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL 60439; eStanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025; fSchool of Materials Science and Engineering & Anhui Provincial Key Lab of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China; gHigh Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL 60439; hInstitute of Physics, Chinese Academy of Sciences, Beijing 100190, China; and iDepartment of Physics and Astronomy, George Mason University, Fairfax, VA 22030

Contributed by Ho-kwang Mao, January 4, 2016 (sent for review December 5, 2015; reviewed by Deok-Soo Kim and Peter K. Liaw)

Metallc glass (MG) is an important new category of materials, but very few rigorous laws are currently known for defining its “disordered” structure. Recently we found that under compression, the volume (V) of an MG changes precisely to the 2.5 power of its principal diffraction peak position (1/q1). In the present study, we find that this 2.5 power law holds even through the first-order polyamorphic transition of a Ce68Al10Cu20Co2 MG. This transition is, in effect, the equivalent of a continuous “composition” change of 4f-localized “big Ce” to 4f-itinerant “small Ce,” indicating that the 2.5 power law is general for tuning with composition. The exactness and universality imply that the 2.5 power law may be a general rule defining the structure of MGs.

Significance

This work establishes a general rule correlating the bulk properties (volume (V) with atomic structure information (principal diffraction peak position q1) for metallic glasses, i.e., V∝(1/q1)2.5. It is shown that the 2.5 power law is strictly followed by any metallic glass with its volume tuned by pressure and/or composition. This general 2.5 power law is attributed to the well-constrained structure change/modification that inevitably happens during pressure and/or composition tuning of metallic glasses, which brings insights into the structure of metallic glasses.
by 4f-itinerant “small Ce.” As a result, we are able to vary both pressure and composition of a MG in a well-controlled way for the first time, to our knowledge.

Results and Discussion

The Ce₆₈Al₁₀Cu₂₀Co₂ MG samples were prepared by copper mold casting technique. Using in situ high-pressure X-ray diffraction (XRD) and the recently developed in situ high-pressure full-field nanoscale transmission X-ray microscopy (TXM), the \(q_1 \) and \(V \) were accurately measured as a function of pressure (see Materials and Methods for details). Fig. 1A shows a series of XRD patterns collected in a diamond anvil cell (DAC). Fig. 1B shows the \(2\pi q_1 \) as a function of pressure. The \(2\pi q_1 \) is believed to correlate with the average interatomic spacing in MGs (31–33), which thus could reflect the structural evolution with volume (density) variance under pressure. Two glassy states can be identified in Fig. 1B. They are separated by a transition region between \(~2\) GPa and \(~5\) GPa, indicating a polyamorphic transition in Ce₆₈Al₁₀Cu₂₀Co₂ MG. This phenomenon is similar to those observed in many other rare-earth-elements–based MGs showing kinks of \(q_1 \) under pressure (27, 28, 34, 35).

The sample volume change during compression can be directly measured by TXM, which is proportional to the total number of voxels within the 3D renderings shown in Fig. 2. The relative volume change \(V/V_0 \) as a function of pressure thus can be derived (Fig. 3). A low-density amorphous (LDA) state (<~2 GPa) and a high-density amorphous (HDA) state (>~5 GPa) with a transition region in between can be identified. These results directly confirm the first-order polyamorphic transition from LDA to HDA states with large differences in both the bulk modulus and density (a \(K_0 \) increase of 47%, and a density increase of \(~9.6\)% when extrapolated to 0 GPa) for the first time, to our knowledge. The sample volume changes calculated from diffraction peak positions using the power-law relationship (24) \(V/V_0 \propto (q_1/q_{10})^D \) with different exponents (\(D = 3.0 \) and 2.5) are also plotted for comparison. The 2.5 power-law volume data are surprisingly in good agreement with the TXM data (difference is less than 0.4% below 7 GPa) with accuracy comparable to the XRD of crystalline materials, whereas the cubic power law shows increasing deviation with pressure from the TXM volume data (a difference of \(~4\)% at \(~8\) GPa).

Because both \(q_1 \) (Fig. 1) and \(V \) (Fig. 3) are obtained from experiments, with the common variable \(P \), the relationship between \(q_1 \) and \(V \) can be simply established by transfer of variables. Fig. 4A shows the relative volume change \(V/V_0 \) as a function of relative \(q_1 \) shifting \((q_1/q_{10}) \) in Ce₆₈Al₁₀Cu₂₀Co₂ MG compared with the data of another three regular MGs from ref. 24. Despite the polyamorphic transition in Ce₆₈Al₁₀Cu₂₀Co₂ MG, all of the samples including Ce₆₈Al₁₀Cu₂₀Co₂ MG can be well described by the same 2.5 power law. It thus unambiguously demonstrates that the power-law relationship \(V/V_0 \propto (q_1/q_{10})^{2.5} \) is strictly and universally followed by any MG with pressure and even compositional change.

The previously reported 2.3 compositional power law is based on the data of different MG samples at ambient pressure (19). To reexamine the compositional power law, we synthesized seven different bulk MGs with large coverage of \(q_1 \) from 2.2 to 2.8 Å⁻¹. With consistent experimental conditions, the density and XRD of the seven MGs were measured carefully to minimize the experimental uncertainty. The data are listed in Table S1. Fig. 4B shows the comparison of the \(q_1 \) versus \(V/V_0 \) obtained in the present work.
with that from ref. 19. A power-law fitting of the data obtained on the seven MGs yields an exponent of 2.54 ± 0.05, i.e., \(V_a = (216.75 \pm 9.64)\sqrt[3]{(1/qa)}^{2.54 \pm 0.05} \). This result further confirms that the noncubic 2.5 power law is general for pure composition tuning of MGs. But, it should be noted that in Fig. 4B the data obtained in this work is still embedded in the data set from ref. 19 showing no essential difference between them. Therefore, the refined exponent of 2.5 obtained in our experiments also further confirms the validity of the close noncubic exponent of 2.3 power law obtained based on different data sets in ref. 19.

According to the Debye equation, the XRD static structure factor \(S(q) = (1/N) \sum b_i b_j \sin(q r_{ij})q r_{ij} \) regardless of the specific atomic structure, where \(N \) is the total number of atoms in the system. \(b_i, b_j \) represent the X-ray scattering length of atom \(i \) and \(j \), respectively, \(q \) is the scattering vector, and \(r_{ij} \) is the interatomic distance between atoms \(i \) and \(j \). In an ideal case, if there is only uniform volume scaling down, i.e., all of the interatomic distances \(r_{ij} \) simply shrink by the same rate with the shrunk distance \(r_{ij}' = a r_{ij} \) (0 < \(a < 1 \)), the structure factor will be constant (no phase transition), i.e., \(S(q') = S(q) \), then we will have the scattering vector \(q' = q/a \). This means all of the peak positions in \(S(q) \) will simply shift by the same factor of \(1/a \) in \(q \) space. Thus, the cubic power law \(V_a0-LDA = V_a0-HDA \) will naturally hold if there is no structural transition (e.g., compression of a cubic crystalline phase). This has been the basis of thermal volume expansion measurements in MGs using XRD (33). But, if there is a structural transition (symmetry breaking), the cubic power law will break.

During the polyamorphic transition of the \(\text{Ce}_{68}\text{Al}_{10}\text{Cu}_{20}\text{Co}_{2} \) MG, pressure and composition are closely associated “equivalent” parameters, which cause the same volume (density) change together. Therefore, the result in this work demonstrates that the 2.5 power law is general for tuning with composition in MGs as well, implying a unified underlying mechanism exists for pressure and/or composition tuning of MGs. Through the polyamorphic transition, there is marked structural change (28). According to the foregoing discussion, this polyamorphic structural change will break down the cubic power law. Hence, obviously the noncubic power law discovered in \(\text{Ce}_{68}\text{Al}_{10}\text{Cu}_{20}\text{Co}_{2} \) MGs must be intimately associated with the structural change caused by pressure and composition tuning. Moreover, it should be noted that under compression, different element components in a multiple-component MG system usually have different mechanical responses to pressure; as a result, it will cause structural modifications as well (36). Meanwhile most compositional variation in MGs involves considerable structural change (37). Structure change is a common variable inevitably involved in the composition or pressure tuning of MGs.

Therefore, it is reasonable that the cubic power law breaks down during the pressure and/or composition tuning of MGs, but the exactness and universality of the alternative noncubic (2.5) power law are surprising. It implies that the structural change in MGs is not random, but follows a general, strict rule, which defines the 2.5 power law. Next, why is the structure change of MGs strictly constrained rather than random? In contrast to the open network structure of conventional glasses constrained by charge neutrality and directional covalent bonding, MGs have more degrees of freedom with nondirectional metallic bonding. The structure of MGs is packing-dominated; efficient, dense packing of various atoms/clusters is one basic structural feature [e.g., the density difference between the glass and its crystalline counterpart is often less than 0.5% in MGs (38), whereas it can be up to ~20% in SiO2 network glass (39)]. To achieve the densest possible packing of...
atoms of different sizes, it has been recognized that well-developed local order (e.g., short-range order and medium-range order) are required, which thus rules out the possibility of totally random packing (40). From the chemistry perspective, optimizing the combination of atoms with different sizes and concentrations is the major strategy to improve GFA via achieving efficient packing (3, 41). It means that the composition change/selection of MGs should also follow a certain rule rather than a random combination. Under pressure, the atomic sizes of each component usually will be changed, especially the size ratio between each component, which is similar to the compositional change and should be constrained as well. Therefore, randomness does not really facilitate the formation of MGs; a hidden general rule of MGs with a (T/Tg)2/3 temperature dependence has been suggested to be the percolation clusters (22). However, we note that the work in ref. 22 only considered compressional behavior. No connection between pressure and composition tuning of MGs, the focus of the present work, was made.

Conclusions

In this work, we directly measured the volume V and diffraction peak position q1 of the Ce68Al10Cu20Co2 MG through its first-order polyamorphic transition, and of seven MGs with different compositions at ambient pressure. The pressure and/or composition tuning of MGs all strictly obey the same 2.5 power law, revealing a similar nature. Therefore, a general rule (the 2.5 power law) correlating the structure with properties of MGs is established. The well-constrained structure change during pressure and/or composition tuning is suggested to be the mechanism of this general rule. The dimensionality of 2.5 implies the fractal nature of MG structure. The 2.5 power law may be a necessary and sufficient condition for defining an MG system from the structural perspective which sets them apart from other totally disordered or highly ordered systems. The results in this work may have important implications for understanding the structure of MGs, and even the disorder packing problems in general.

Materials and Methods

MG rods with a diameter of 1–2 mm were prepared by copper mold casting. The glass nature of prepared rods was examined by XRD and differential scanning calorimetry. Sample densities at ambient conditions were measured using the Archimedes principle on an analytical balance (Mettler Toledo XS250DU) with accuracy of 0.01 mg.

Based on molecular dynamics XRD experiments with a wavelength of 0.3738 Å and a focused beam size of approximately 6 × 7 μm² were performed at beamline 16-ID-B of the High Pressure Collaborative Access Team (HPCAT), Advanced Photon Source (APS), Argonne National Laboratory (ANL). The samples were all cut into approximate 50 × 50 × 20-μm³ chips, and then were loaded into a symmetrical DAC along with a tiny ruby ball beside the sample as a pressure calibrator (44). The gasket was T301 stainless steel. Helium was introduced at a DAC at an O/NAl ratio, as the pressure-transmitting medium. The pressure fluctuation estimated from the pressures measured before and after each exposure was found to be less than 0.2 GPa. The background scattering was collected at each pressure by shining the X-ray beam on the empty area inside the sample chamber, which only went through helium and two diamond anvils. The XRD measurements of seven ambient MG samples were performed without DAC but using the same setup experiment with in situ high-pressure XRD experiments. The XTM experiments were performed at beamline 6-2 of the Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory. To simplify the experiment and the reconstruction, the Ce68Al10Cu20Co2 BMG sample was cut into a nearly cylindrical shape (~15 μm in height and ~10 μm in diameter) with high-quality surface using focused ion beam (FIB) in the Stanford Nanofabrication Characterization Laboratory (PEI Straumanis FIB/SEM). A beryllium (Be) gasket with cubic BNepoxy insert was prepared, which can reliably maintain the thickness of the sample chamber above 30 μm up to 20 GPa (24). Silicone oil was loaded into a cross-DAC as the pressure-transmitting medium with two tiny ruby balls close to the sample as the pressure calibrator. Some gold fiducial markers were loaded as well beside the sample for accurate alignment in the tomographic reconstruction. The full-field XTM was used for tomography data (2D projection images) acquisition. The field of view was ~40 μm while the 2D spatial resolving power of the microscope is better than 40 nm. The sample was illuminated by a 9.4 keV conical X-ray beam created by a capillary condenser. The raw 2D projection images of 2,048 × 2,048 pixels were collected every 10 s by moving the DAC along the X direction (Fig. S1). Then the raw 2D images were processed using XTM-Wizard software (45). The tomographic reconstruction technique algorithm was applied to each sinogram with 15 iterations cycles, and the 3D structure was obtained by stacking the reconstructed slices in order (46). Automatic 3D segmentation using the Avizo (Version 8.0.1, Visualization Science Group) was performed to calculate the sample volume at various pressures, which is proportional to the number of voxels within 3D segmentation.

ACKNOWLEDGMENTS. We thank Guoyin Shen for helpful discussions, and Bo Huang, Rongjie Xue, and Weixin Jiang for their help in the sample preparation. We thank Douglas Van Campen for his engineering support at B6-2 Stanford Synchrotron Radiation Lightsource (SSRL). Initial XTM experiments were performed at a DAC in a Galactic DAC, a high-pressure X-ray Synchrotron Radiation Lightsource with the beamline support of Guangzhou Zhou. Portions of this research were carried out at the SSL, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Stanford University. The TXM sample preparation by FIB was performed at the Stanford Nano Shared Facilities (SNSF). We thank Sergey N. Tkachev for helping with the gas loading process at sector 13, which is supported by the National Science Foundation (NSF) (EAR 11-57758 and EAR-1128799), the DOE (DE-FG02-94ER441466), and the Consortium for Materials Properties Research in Earth Sciences. Q.Z., W.Y., and H.-K.M. acknowledge financial support from the DOE-Basic Energy Sciences (BES) X-Ray Scattering Core Program (DE-FG02-99ER45777) and from the National Natural Science Foundation of China (NSFC) (U1530402). W.L.M. and C.Y.S. are supported by NSF-EAR-1055454. W.H.W. is supported by NSFC (51271195). Use of the High Pressure Collaborative Access Team (HPCAT) facility is supported by the DOE-National Nuclear Security Administration under Award DE-NA0001974 and the DOE-BES under Award DE-FG02-99ER45775, with partial instrumentation funding by the NSF. The Advanced Photon Source is supported by the DOE-BES, under Contract DE-AC02-06CH11357.

Mao HK, Bell PM, Shaner JW, Steinberg DJ (1978) Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. J Appl Phys 49(6):3276–3283.

Fig. S1. Two-dimensional projection images of Ce₆₈Al₁₀Cu₂₀Co₂ MG collected by TXM shown at a fixed view angle but different pressures. The initial pressure was set at 0.2 GPa when the Cross-DAC was closed. The experiment ended at 7.8 GPa because of the severe gasket flow that occurred above 7.2 GPa, which also resulted in the sample elongation above 7.2 GPa. The sample volume is measured by counting the total number of voxels within the 3D segmentations regardless of the sample morphology. Therefore, the sample shape change above 7.2 GPa does not introduce extra uncertainty in volume measurement. In addition, tiny pores are commonly observed in MGs during the melt-cast process, which affects the accuracy of bulk density or volume measurement of MGs by the traditional Archimedes principle. In contrast, the nanoscale TXM is able to catch any pore embedded in bulk samples and rules out the influence of pores. These are two of the major merits of TXM for the volume measurement of MG in this work.

Table S1. PDP position q₁ obtained by synchrotron radiation XRD and mass density ρ determined by Archimedes principle of seven MGs at ambient conditions

<table>
<thead>
<tr>
<th>Composition</th>
<th>q₁, Å⁻¹</th>
<th>ρ, g cm⁻³</th>
<th>Vₐ, Å³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu₆₀Zr₁₃Ti₇</td>
<td>2.793</td>
<td>7.56</td>
<td>15.73</td>
</tr>
<tr>
<td>Cu₄₆Zr₄₈Al₈</td>
<td>2.702</td>
<td>7.01</td>
<td>17.38</td>
</tr>
<tr>
<td>Zr₆₄Cu₃₇.₆Ag₈₄Al₈</td>
<td>2.675</td>
<td>7.18</td>
<td>17.82</td>
</tr>
<tr>
<td>Zr₆₄.₃Cu₁₅.₇Ni₁₀.₁₂Al₁₀</td>
<td>2.566</td>
<td>6.60</td>
<td>19.40</td>
</tr>
<tr>
<td>Ce₆₉Al₁₀Cu₂₀Co₂</td>
<td>2.266</td>
<td>6.79</td>
<td>27.36</td>
</tr>
<tr>
<td>La₃₂Ce₇₂Al₁₆Cu₁₅Ni₅</td>
<td>2.229</td>
<td>6.26</td>
<td>28.12</td>
</tr>
<tr>
<td>La₂₄Al₁₆Cu₁₁₇Ag₂₃Ni₅Co₅</td>
<td>2.205</td>
<td>6.14</td>
<td>28.59</td>
</tr>
</tbody>
</table>

Vₐ is derived from ρ, i.e., \(Vₐ = M/\rho Nₐ \), where \(\rho \) is the bulk mass density, \(Nₐ \) is the Avogadro constant, and \(M \) is the molecular weight of each specific composition.