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Quasiparticle energies and excitonic effects in dense solid hydrogen near metallization
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We investigate the crucial metallization pressure of the Cmca-12 phase of solid hydrogen (H) using many-body
perturbation theory within the GW approximation. We consider the effects of self-consistency, plasmon-pole
models, and the vertex correction on the quasiparticle band gap (Eg). Our calculations show that self-consistency
leads to an increase in Eg by 0.33 eV over the one-shot G0W0 approach. Because of error cancellation between
the effects of self-consistency and the vertex correction, the simplest G0W0 method underestimates Eg by only
0.16 eV compared with the prediction of the more accurate GW! approach. Employing the plasmon-pole models
underestimates Eg by 0.1–0.2 eV compared to the full-frequency numerical integration results. We thus predict
a metallization pressure around 280 GPa, instead of 260 GPa predicted previously. Furthermore, we compute
the optical absorption including the electron-hole interaction by solving the Bethe-Salpeter equation (BSE). The
resulting absorption spectra demonstrate substantial redshifts and enhancement of absorption peaks compared
to the calculated spectra neglecting excitonic effects. We find that the exciton binding energy decreases with
increasing pressure from 66 meV at 100 GPa to 12 meV at 200 GPa due to the enhanced electronic screening as
solid H approaches metallization. Because optical measurements are so important in identifying the structure of
solid H, our BSE results should improve agreement between theory and experiment.
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I. INTRODUCTION

Hydrogen (H) is both the most abundant and simplest
element in the universe. One might incorrectly assume, then,
that physicists have a very precise understanding of H at
its natural conditions. Unfortunately, the conditions at which
much of the H in the universe exists are exceptionally difficult
to reproduce in the laboratory. Therefore, the phase diagram
and electronic structure of H under extreme conditions remain
largely unknown. While the unknown regions of the phase
diagram are at high pressures and temperatures that could
never naturally occur on earth, they are crucial to astrophysics
and planetary science. Moreover, it has been predicted [1–3]
that solid H might become superconducting with transition
temperature higher than that of any known material, including
cuprates. Thus extensive experimental and theoretical efforts
continue to tackle the famous hydrogen puzzle [4–10].

A number of unanswered questions regarding solid H
remain. There is not yet a broad consensus on the onset
of metallization [9] and the stability of phases [4] except
for phase I [11,12] because of the notorious difficulties in
experimental measurements. In particular, x-ray scattering
off of H is extremely low, making the usual crystallo-
graphic techniques ineffective. It is also very challenging
to accurately measure its optical and excitonic properties
under ultrahigh pressures. Theory thus plays a central role in
understanding its structural, electronic, and optical properties
[7–9,13–16]. Density functional theory (DFT) has been the
primary predictive tool in the literature [8,15,16]. However,
DFT within the local-density approximation (LDA) or the
generalized gradient approximation (GGA) is not expected
to precisely predict the phase diagram because of the small
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enthalpy differences between competing phases. The neglect
of quantum nuclear effects might also lead to sizable errors
[13]. Moreover, the onset of metallization estimated by DFT
is questionable because the Kohn-Sham (KS) eigenvalues do
not correspond to quasiparticle (QP) energies, and using the
KS eigenvalues to approximate the QP energies often severely
underestimates band gaps (Eg) in a wide range of insulators
and semiconductors [17,18]. Nonetheless, the KS band gap can
give accurate estimates of the pressure derivative ∂Eg/∂P [19].

The current state-of-the-art computational approach for QP
excitations is many-body perturbation theory within the GW
approximation [17,18,20]. Recent GW calculations [7,21]
have predicted an insulator-to-semimetal transition in the
Cmca-12 phase near 260 GPa. However, the accuracy of
the GW approximation depends on how such calculations
are performed. Plasmon-pole models (PPMs [17,18]) are
often employed to replace the frequency-dependent dielectric
response function with a model function. In PPMs, certain
sum rules are enforced so that explicit evaluation of the
dielectric function is limited to zero frequency or up to one
more finite frequency. Recent investigations [22,23] suggest
that Eg can be quite sensitive to choices in PPM. In practice,
the one-shot G0W0 with a single iteration is normally carried
out. The computationally very demanding self-consistent GW
calculations are rarely employed, even though self-consistency
could also lead to significant changes in Eg [24,25]. More
physical results can be obtained if the vertex correction (!) is
included [26–28], but GW! calculations are cumbersome and
might become intractable.

The major objective of our work is to systematically explore
the effects of these various flavors of GW calculations on the
electronic structure and the metallization pressure of the
Cmca-12 phase of solid H. Similar to the work that in-
vestigated the impact of different density functionals on the
electronic structure of solid H [13,14], we study the accuracy
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of a variety of GW methods using four common PPMs with
different levels of self-consistency and vertex corrections. Here
we only consider the Cmca-12 phase, which is competitive in
phases III and IV. Metallization of solid H is also likely to
occur in this phase.

In addition to QP energies, we calculate the optical
properties of solid H by solving the Bethe-Salpeter equation
(BSE [20,29]) to account for the electron-hole interaction.
Theoretical optical-absorption spectra for solid H have been
reported previously [7,21], but in these works excitonic effects
have been neglected. Because optical measurements are so
critical to the identification of the structure of solid H, it is
important to compute the optical absorption as accurately as
possible. Excitonic effects substantially modify the optical
spectrum in semiconductors such as Si, even though the
electron-hole interaction in Si is relatively weak [29]. We also
compute the exciton binding energy in solid H as a function of
pressure, which is an excellent indicator of the strength of the
electron-hole interaction.

II. FUNDAMENTAL FORMALISMS

In DFT, the exchange-correlation energy (Exc) is deter-
mined by a functional of the total electron density [30]. A set
of Schrödinger-like effective single-particle equations based
on this principle, the KS equations [31],

[
− 1

2∇2 + Vext + VH + Vxc
]
ψKS

nk = EKS
nk ψKS

nk , (1)

can be solved self-consistently to yield the ground-state energy
and charge density. Here, Vxc is the exchange-correlation
potential, the functional derivative of Exc[n(r)] with respect
to density n(r), Vext represents the external potential created
by the nuclei and external fields, and VH is the Hartree potential
due to classical electrostatic repulsion. KS orbitals ψKS

nk and
their single-particle eigenvalues EKS

nk are often interpreted
as QP wave functions and energies, though this is formally
incorrect.

The actual QP states can be obtained by solving the
following QP equation [32],

[
− 1

2∇2 + Vext + VH + $
(
E

QP
nk

)]
ψ

QP
nk = E

QP
nk ψ

QP
nk , (2)

where $(EQP
nk ) is the self-energy operator. In general, $ is

nonlocal and non-Hermitian, and the imaginary part of its
eigenvalues are related to the lifetime of the QP. Casida
showed that the exact KS potential is the variationally best
local approximation to the exchange-correlation self-energy
operator [33]. However, in almost all GW calculations, instead
of solving the above equation [Eq. (2)], the QP energies are
computed by evaluating the following corrections to the KS
energies:

E
QP
nk = EKS

nk +
〈
ψKS

nk

∣∣$
(
E

QP
nk

)
− Vxc

∣∣ψKS
nk

〉
. (3)

The frequency dependence of $(E) is approximated by a linear
function in the neighborhood of the KS energy.

Although the self-energy operator can be rigorously derived
from many-body theory using a perturbative expansion of the
single-particle propagator [32], or Green’s function (G), in
practice, an approximation to $ must be made to keep the
calculations feasible. The most widely used scheme is the

GW approximation [17,18,20,34],

$ = iGW, (4)

where G and W are estimated using the KS electronic
structure. W is the Coulomb interaction screened by the
frequency dependent RPA (random-phase approximation)
dielectric function.

Equation (2) describes the single-QP excitations associated
with addition or removal of an electron. However, absorption
of a photon creates a neutral two-QP excitation that consists
of a quasielectron above the Fermi surface and a quasihole
below, referred to as an exciton. Accurately describing opti-
cal processes, therefore, requires knowledge of the two-QP
propagator, whose equation of motion is determined by the
Bethe-Salpeter equation (BSE [20,29,35,36]):
(
E

QP
ck − E

QP
vk

)
AS

vck +
∑

v′c′k′

⟨vck|Keh|v′c′k′⟩AS
v′c′k′ = %SAS

vck.

(5)

Here AS
vck is the exciton wave function in the basis of QP

states, %S is the excitation energy, and Keh is the electron-hole
interaction kernel. v and c refer to valence and conduction
states, respectively. Optical transitions occur as transitions
from the ground state to excitons AS

vck, in contrast to transitions
from the ground state to independently propagating electrons
and holes.

In GW calculations, the KS wave functions and eigenvalues
are used as a basis to construct the QP Green’s function G,
while in BSE calculations the KS wave functions are inserted
directly into Eq. (5) with QP energy corrections applied to get
E

QP
nk . The detailed theory and implementation can be found in

the literature [18,20,29,32,35,36].

III. RESULTS AND DISCUSSION

A. Crystal and electronic structure

We have reproduced the results of Pickard and Needs
[15] for the zero-temperature (ground-state) phase diagram
up to 300 GPa using DFT calculations with the PBE-GGA
exchange-correlation functional [37] and norm-conserving
pseudopotentials [38]. We performed both ground-state struc-
tural relaxations and molecular dynamics simulations of finite-
temperature annealing to find the global energy minimum.
The zero-point lattice vibrations have been shown to have
negligible effects on the calculated phase diagram [15]. As
shown in Fig. 1, our results suggest that C2/c and Cmca-12
structures correspond to stable phases III and IV, respectively,
with transition pressure around 250 GPa.

In this work, we focus on the Cmca-12 structure because the
crucial metallization of solid H is likely to occur in this phase.
It is also consistent with some experimental data indicating the
onset of the insulator-to-metal transition [7]. Figure 2 shows
the Cmca-12 structure, as originally reported by Pickard and
Needs [15]. We construct the 24-atom conventional cell using
the symmetry inequivalent atoms described in Ref. [15], and
a 12-atom primitive cell is derived from the conventional cell
and used throughout. The crystal is a layered structure with
ABA stacking, as shown in Fig. 2, and its individual layers are
similar to the famous honeycomb structure of graphene [7].
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FIG. 1. (Color online) The difference in enthalpy (&H ) relative
to the Cmca-4 phase for several candidate structures as a function of
pressure.

Next, we examine the reliability of the pseudopotential
plus plane-wave method for computing the DFT electronic
structure of solid H. Figure 3 shows the electronic band
structure of the Cmca-12 phase at 250 GPa obtained using
three different methods. First, we employ the ABINIT [38–42]
package with a very hard norm-conserving pseudopotential
(rc = 0.2 a.u.) and a cutoff energy of 120 Ha, and the
resulting band structure is plotted in Fig. 3(a). Next, a
plane-wave calculation using a much softer pseudopotential
(rc = 0.9 a.u.) with a cutoff energy of 30 Ha is carried out,
whose results are shown in Fig. 3(b). Finally, we compare
the above calculations to the results of a full potential,
linearized-augmented-plane-wave (LAPW [43]) calculation
implemented in the Elk FP-LAPW code [44] [Fig. 3(c)].
LAPW calculations use a muffin-tin radius of 0.68 a.u. and
an rGmax value of 7.0. These three band structures agree very
well with each other, and are also in very good agreement
with previous work [14,16]. At any pressure from 100 to
250 GPa, the deviation in band gaps, which are between the
halfway point of the !-Y segment (valence-band maximum,

FIG. 2. (Color online) The Cmca-12 crystal structure. (a) A
single layer and (b) ABA stacking, with the conventional unit cell
shown in red. Blue and green solid spheres represent protons on A
and B layers, respectively.

FIG. 3. Calculated electronic band structures of the Cmca-12
phase at 250 GPa based on DFT, using (a) a very hard norm-
conserving pseudopotential and plane waves, (b) a much softer
pseudopotential with plane waves, and (c) the all-electron full
potential LAPW method. Overlaps between the VBM and CBM are
0.57, 0.53, and 0.47 eV in panels (a), (b), and (c), respectively.

VBM) and the Y -point (conduction-band minimum, CBM),
due to the three different methods is less than 0.1 eV. At
high pressures, the electronic structure is semimetallic, and
we compare the overlap between the VBM and CBM at the
same points. With this excellent agreement, we assert that
we can use the relatively soft pseudopotential with plane
waves in the present investigation of electronic structure up to
250 GPa.
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FIG. 4. (Color online) Band gap of Cmca-12 solid hydrogen as
a function of pressure in the G0W0 approximation using 4 PPMs
(described in text) and the numerical full-frequency dependent
screening. Solid lines are linear fits to their respective data points.
The dashed line is a rigid shift of the fit to the PPM 2 data, shifted
by the difference between the full-frequency calculation (square data
point) and the PPM 2 calculation (red ×) at 200 GPa. KS indicates
the Kohn-Sham band gap.

B. Quasiparticle energies

All GW calculations in this work are performed on an
unshifted 8 × 8 × 8 k-point grid, yielding 105 irreducible k
points. The dynamical screening (W ) is calculated on the
same grid of q points. An unshifted 8 × 8 × 8 grid has the
advantage of containing the VBM at the reciprocal-lattice
coordinates ( 3

4 , 1
4 ,0) on the !-Y segment and the CBM at

the Y point ( 1
2 , 1

2 ,0). Therefore, no k-point interpolation
is required to compute the fundamental band gap. Initial
DFT calculations use the PBE-GGA exchange-correlation
functional. The screening is evaluated with a cutoff energy
of 15 Ha with the sum over states performed up to 200 bands.
The correlation part of $ is calculated up to a cutoff of 15 Ha,
the exchange is calculated with a cutoff of 30 Ha, and 150
total bands are used in the self-energy summations. We use
the ABINIT package and cross check in certain cases with
QUANTUM ESPRESSO [45] and BerkeleyGW [46].

We start by studying the effect of the PPM in the one-
shot G0W0 calculations. We compare Eg calculated with four
common PPMs constructed by (1) Godby and Needs [47], (2)
Hybertsen and Louie [17], (3) von der Linden and Horsh [48],
and (4) Farid and Engel [49]. Brief details of the PPMs are
in the Appendix. As summarized in Fig. 4 and Table I, these

TABLE I. Calculated band gaps (Eg in eV) for Cmca-12 solid H
as a function of pressure (GPa) using the G0W0 method with different
plasmon-pole models. KS indicates the Kohn-Sham band gap.

Pressure KS PPM 1 PPM 2 PPM 3 PPM 4

150 1.78 3.13 3.17 3.10 3.19
200 0.50 1.60 1.62 1.57 1.65
250 0.40 0.39 0.35 0.42

four PPMs agree well with each other on the magnitude of
the band gap, with the largest difference among them being
merely 0.09 eV. The Hybertsen-Louie PPM was cross checked
by QUANTUM ESPRESSO/BerkeleyGW. The difference between
the two packages is less than 8 meV.

The QP corrections to the KS eigenvalues decrease with
pressure, or, equivalently, the KS energies better approximate
the QP energies as pressure increases. Despite this small shift
in corrections, the derivative ∂Eg/∂P predicted by the KS
eigenvalues still agrees well with GW results. A linear fitting
to the G0W0 band gap as a function of pressure is nearly a rigid
shift of the KS fit. G0W0 predicts a metallization pressure of
260 GPa, in comparison with 225 GPa predicted by KS-DFT.
Our estimate is in good agreement with previous work [21].
Note that the metallization here is an insulator-to-semimetal
transition (Fig. 3), since there is an indirect overlap of valence
and conduction bands above the transition pressure.

Comparing the four PPMs to each other does not actually
assess their accuracy, however, since they may all have similar
errors compared to the full-frequency dependent dielectric
function. To test this, we compute G0W0 corrections using
the real-axis integration method implemented in BerkeleyGW
[46]. In this highly expensive technique, the screening is
evaluated on a grid of frequencies, and the self-energy is
computed as a numerical integral along the real frequency
axis. We perform the frequency dependent screening calcu-
lation only at 200 GPa and found a band gap of 1.80 eV,
compared with the largest band gap of 1.64 eV computed
using the Hybertsen-Louie PPM. All of the PPMs, then,
tend to underestimate the band gap of solid H compared
to the frequency dependent screening. Because the pressure
derivative of the band gap is relatively constant across all
methods, we extrapolate the band gap calculated with full
frequency dependence to higher pressures from this single
data point. A small increase of 0.16 eV in Eg corresponds to
an upward shift in metallization pressure of less than 10 GPa,
as indicated in Fig. 4, which we consider to be an acceptable
error due to the PPM.

Next, we test the effect of self-consistency on band gap.
ABINIT is able to perform self-consistent GW calculations on
two levels: eigenvalues only or eigenvalues with eigenvectors.
In the case of eigenvalue self-consistency, the self-energy is
constructed in the basis of KS eigenstates with the matrix
elements at each k point:

H
QP
(i+1)(E) = E

QP
nk,(i)δn,m +

〈
ψKS

nk

∣∣$(i)(E) − Vxc
∣∣ψKS

mk

〉
. (6)

Here i represents the ith iteration, with i = 0 equal to the
KS energies. The eigenvalues of this Hamiltonian are new
QP energies that, in general, are not equal to the perturbative
energies of Eq. (3). In the case of self-consistency on both
eigenvalues and eigenvectors, each iteration finds new QP
energies and wave functions that are used in the next iteration
to update H

QP
(i) (E):

H
QP
(i+1)(E) = E

QP
nk,(i)δn,m +

〈
ψ

QP
nk,(i)

∣∣$(i)(E) − Vxc
∣∣ψQP

mk,(i)

〉
.

(7)

The first iteration of either Eq. (6) or Eq. (7) is a G0W0
calculation including the off-diagonal elements of the self-
energy. Before considering the effect of self-consistency, we
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FIG. 5. G0W0 band gap of Cmca-12 solid hydrogen including
off-diagonal matrix elements at 200 GPa, using the PPM of Godby
and Needs.

focus on the role of the off-diagonal matrix elements. Figure 5
shows the convergence of the band gap with respect to the
dimension of the self-energy matrix. Extrapolating Fig. 5
to a complete basis (∞ number of bands), we estimate that
constructing the self-energy with 50 bands gives an error of
less than 7 meV in Eg. With 50 bands, Eg = 1.67 eV, very close
to the perturbative G0W0 value of 1.60 eV. However, using too
few bands gives noticeable errors, e.g., Eg of 1.84 eV with
only 12 bands, an error of 0.17 eV. Fortuitously, the converged
band gap with off-diagonal matrix elements included is very
close to the perturbative value using diagonal matrix elements
only. Thus, the effect of the off-diagonal matrix elements on
metallization pressure is negligible.

We perform both eigenvalue only and eigenvalue plus
eigenvector self-consistent calculations using two PPMs con-
structed by (1) Godby and Needs and (2) Hybertsen and Louie.
Our self-consistent calculations include the off-diagonal ma-
trix elements of the self-energy, and we update both G and
W iteratively in H

QP
(i) (E). Such calculations are extremely

demanding, and we can only use 16 bands, even though Fig. 5
indicates that 50 bands are necessary to reach convergence
with respect to the off-diagonal matrix elements. We remedy
the small incomplete basis error by applying a −0.15 eV
correction to our calculations using 16 bands. The −0.15 eV
correction is obtained from G0W0 calculations (Fig. 5) as the
difference in Eg between calculations with 16 and 50 bands,
which assumes that the corrections to the QP energies due to
an improved basis are independent of self-consistency.

Table II summarizes the band gap computed with these two
versions of self-consistency, as well as the non-self-consistent
G0W0 for reference. For self-consistent calculations, the
difference between PPMs is approximately 0.04 eV, in close
agreement with the non-self-consistent G0W0 results. Eigen-
value self-consistency leads to an increase of ∼0.1 eV in band
gap. This increase agrees well with the work of Shishkin and
Kresse, who found that G0W0 systematically underestimates
band gaps compared with eigenvalue self-consistent GW [24].
Including eigenvector self-consistency further enhances band
gaps by roughly 0.22 eV, suggesting that there are nontrivial

TABLE II. Calculated band gaps (Eg in eV) for Cmca-12 solid
H at 200 GPa using the self-consistent GW method. Y (N) indicates
self-consistency (no self-consistency) on eigenvalues or eigenvectors.
All calculations include the off-diagonal elements of the self-energy
up to 16 bands. For the non-self-consistent calculation (row 1, G0W0),
the extrapolated gap (Eextrap

g ) is the actual value with 50 bands as
shown in Fig. 5. For the remaining rows, E

extrap
g are obtained by

applying the same shift of −0.15 eV as that in the first row.

Eigenvalue Eigenvector PPM Eg E
extrap
g

N N 1 1.82 1.67
Y N 1 1.92 1.77
Y N 2 1.96 1.81
Y Y 1 2.15 2.00
Y Y 2 2.18 2.03

deviations between the starting KS wave functions and the true
QP wave functions obtained by diagonalizing the self-energy.

Depending on the choice of PPM and self-consistency, our
calculated Eg of solid H at 200 GPa falls within a range of
about 0.36 eV. Based on Fig. 4, 0.36 eV corresponds to an
upward shift of ∼20 GPa in the metallization pressure. Up to
this point, our most physical calculations are the eigenvalue
plus eigenvector self-consistent calculations, for which results
are shown in the bottom two rows of Table II. Those are,
in principle, our most accurate predictions based on the GW
approximation. We note that our zero-temperature electronic
structure calculations ignore the effects of the electron-phonon
interaction, however, which could renormalize the band gap
and shift the metallization pressure accordingly.

Because of the noticeable differences between the two
types of self-consistency in Table II, we now elaborate on
the quality of the starting KS wave functions. Figure 6 shows
the difference between the GW QP density and the KS
charge density, ndiff(r) = nQP(r) − nKS(r). The majority of the
difference is localized on the H-H bonds, which is indicative of
the intrinsic problem of using KS wave functions to describe
QP wave functions.

FIG. 6. (Color online) Difference in eigenvector self-consistent
GW (PPM of Hybertsen and Louie) and DFT charge densities of
solid H at 200 GPa. Red and yellow indicate high and low isosurface
values, and the black spheres represent protons.
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We further quantify the difference in charge densities by
integrating |ndiff(r)| over one primitive cell, and we find that
roughly 0.13 occupied states per cell are deviated from the
DFT charge density. For comparison, we repeat the calculation
for Si at ambient conditions and find a deviation of only 0.02
occupied states per cell. Normalized by the total charge in
their respective cells for comparison, Cmca-12 hydrogen has
an average of 0.011 charge variation between GW and DFT
per electron, compared to 0.0025 for Si. This is certainly not
a definitive conclusion on the quality of individual KS wave
functions in solid H, but it does point to a qualitative difference
between solid H and Si. Given the band-gap values in Table II
and the distribution displayed in Fig. 6, we conclude that there
are meaningful deviations between KS states and GW QP
wave functions in Cmca-12 hydrogen.

Finally, we include the vertex correction to calculate QP
energies in the GW! approximation. In the ordinary GW ap-
proximation, the vertex function is !(1,2; 3) = δ(1,2)δ(1,3),
which results in the self-energy $ being a product of G and
W . The neglect of the features in ! in the GW approximation
makes the calculations tractable, but its reliability compared
to GW! has only been partly investigated [27,28].

The self-energy in Hedin’s equations is [34]

$(1,2) = i

∫
d(3,4)W (1+,3)G(1,4)!(4,2; 3), (8)

where each number is a set of position, spin, and time
coordinates. In the ABINIT implementation [26] of GW!, the
screened interaction W of GW is replaced by an effective
interaction W̃ . Assuming the starting self-energy $ is the DFT
exchange-correlation potential, one can derive the electron-
test-charge dielectric function and W̃ :

W̃ = v[1 − χ0(v + Kxc]−1. (9)

Here v is the bare Coulomb interaction, χ0 is the single-particle
polarizability, and the exchange-correlation kernel Kxc is the
functional derivative of Vxc with respect to density,

Kxc = δVxc(1)
δn(2)

, (10)

contributing an effective exchange-correlation potential to the
interaction. In contrast, W contains only the screened Coulomb
interaction.

Table III shows band gaps calculated in the GW! ap-
proximation. First, the perturbative G0W0! gap, i.e., only

TABLE III. Calculated band gaps (Eg in eV) for Cmca-12 solid H
at 200 GPa using the GW! method. Y (N) indicates self-consistency
(no self-consistency) on eigenvalues or eigenvectors and whether or
not the off-diagonal matrix elements (denoted by “Off-Diag”) are
considered. In all the off-diagonal calculations we used 16 bands,
and again the extrapolated gaps (Eextrap

g ) are obtained by applying the
same shift of −0.15 eV as in Table II.

Eigenvalue Eigenvector Off-Diag Eg E
extrap
g

N N N 1.62
Y N Y 1.84 1.69
Y N Y 1.87 1.72
Y Y Y 1.95 1.80

the diagonal matrix elements of $, are considered, agrees
well with the corresponding G0W0 calculation. Including the
vertex function ! increases the band gap by only 0.01 eV.
Including the off-diagonal matrix elements of $ in the G0W0!
calculation also gives a result very close to that of its G0W0
analog with merely a 0.02 eV increase in Eg. Interestingly,
including the vertex function in self-consistent calculations
predicts smaller band gaps than those obtained using self-
consistent GW . Specifically, eigenvalue self-consistent GW!
predicts a band gap 0.05 eV smaller than the corresponding
GW . Including eigenvector self-consistency with the vertex
function predicts a 0.2 eV reduction in Eg compared to
self-consistent GW .

Therefore, the band gap increase associated with self-
consistency is largely compensated by including !. Due to this
error cancellation between self-consistency and the vertex cor-
rection, the most accurate—but tremendously demanding—
self-consistent GW! calculation predicts a band gap (1.80 eV)
only 0.16 eV higher than Eg = 1.64 eV calculated with the
simplest perturbative G0W0 method. This small difference in
Eg increases the metallization pressure of solid hydrogen by
around 10 GPa. Considering the PPM used in place of the
frequency dependent dielectric function, our calculations point
to a metallization pressure around 280 GPa.

C. Optical properties

We compute optical properties using KS wave functions
computed with the QUANTUM ESPRESSO package [45] that
are fed into the BerkeleyGW [46] code to solve the Bethe-
Salpeter equation for correlated electron-hole states in the
Tamm-Dancoff approximation. Optical properties typically
require very dense k-point sampling to reach convergence. The
primary advantage of BerkeleyGW is its unique interpolation
scheme that allows the electron-hole kernel (Keh) to be
accurately interpolated from a sparse k-point grid onto a
denser grid [29,46]. We compute Keh on an 8 × 8 × 8 k-grid
and interpolate the interaction onto a 24 × 24 × 24 grid. The
kernel is calculated for all six occupied bands and the 12
lowest unoccupied bands, then interpolated onto all occupied
bands and the six lowest unoccupied bands. The extra states
on the sparse grid improve the quality of the interpolation.
The dielectric function is obtained using the iterative Haydock
recursion method that avoids diagonalizing the entire BSE
Hamiltonian [50]. Exciton binding energies (Eg) are calculated
by interpolating the kernel onto a dense grid of k points
surrounding the optical gap and diagonalizing the two-QP
Hamiltonian [51–53].

Figure 7 shows the imaginary part of the dielectric function
(ϵ2) of Cmca-12 hydrogen at three different pressures. G0W0
corrections with the Hybertsen-Louie PPM are applied to
correct QP energies, and the optical gap is near the k point
(−3/8,3/8,0). The imaginary part of the dielectric function ϵ2
is computed as

ϵ2(ω) = 16π2e2

ω2

∑

S

|e · ⟨0| v |S⟩ |2δ(ω − %S), (11)

for exciton states |S⟩, exciton energies %S , and light po-
larization vector e. Here v is the single-particle velocity
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FIG. 7. (Color online) Imaginary part of the dielectric function
for Cmca-12 hydrogen at (a) 100, (b) 150, and (c) 200 Gpa
for polarizations along the crystalline axes r1 and r3 with (BSE)
and without (GW-RPA) the electron-hole interaction. A thermal
broadening of 0.15 eV is applied.

operator. In general, the electron-hole interaction enhances
absorption peaks and induces a redshift in the absorption
spectrum of insulators compared to the GW -RPA (random-
phase approximation) spectrum [51,52,54]. Our work shows

TABLE IV. Exciton binding energy (Eb in meV) as a function of
pressure (in GPa) in Cmca-12 solid hydrogen. Here E∗

g is the optical
gap calculated with the BSE (in eV), and ε is the static dielectric
constant.

Pressure E∗
g ε Eb

100 6.39 7.40 66
150 5.17 10.27 29
200 4.22 13.40 12

that this is also true in the present calculation for solid
H. While these changes are expected and perhaps unre-
markable, they are not necessarily unimportant. The shifts
between the BSE and GW -RPA spectra are on the order of
0.5 eV, which could be comparable to shifts in absorption
peaks between competing phases. Comparison of theoretical
absorption spectra without excitonic effects to experiment,
then, could give poor agreement even if the correct phase is
identified.

The shifts between the BSE and GW -RPA spectra cannot
be attributed entirely to electron-hole binding. Exciton binding
energies are, in general, much smaller, on the order or tens
of meV. The shift in the absorption is due to a coherent
superposition of the optical matrix elements between electron-
hole pairs that make up the matrix element in Eq. (11) at low
energies [29]. As pressure increases, there is an enhancement
of the first absorption peak near 5 eV, as well as a decrease in
the shoulder near 9 eV and the peak near 7.5 eV. The primary
absorption peak remains relatively unchanged with pressure,
except for the obvious redshift with band-gap closure. There
are also pronounced differences in the dielectric function for
light polarized along the crystal vectors r1 and r3 due to the
planar structure of Cmca-12.

We also compute exciton binding energies (Eb) as the
difference between the direct quasiparticle gap (Edirect

g ) and
the lowest exciton energy, or optical gap (E∗

g ), Eb = Edirect
g −

E∗
g , as summarized in Table IV. In Cmca-12 hydrogen,

excitons are of the weakly bound Wannier-Mott type, as is
commonly seen in many covalently bonded semiconductors.
Furthermore, Eb on the order of tens of meV is similar
to those in common semiconductors [51–53]. As pressure
increases and the band gap reduces, the static dielectric
constant ε increases and Eb drops due to enhanced electronic
screening. This behavior is contrary to more familiar materials
like the III-V semiconductors, which show a decrease in
dielectric constant with increasing pressure [55]. For the lowest
energy 1s-like exciton, there are no appreciable amplitudes of
electron-hole pairs contributing to the exciton beyond the two
highest (lowest) valence (conduction) bands. We expect the
neglect of the coupling block in the BSE (the Tamm-Dancoff
approximation) between electron-hole pairs and antipairs to be
acceptable. The coupling is expected to be more important as
confinement is increased and dimensionality is reduced from
bulk materials [56]. Our conclusion is that solid hydrogen has
no dramatic excitonic effects, but their impact on the theo-
retical absorption spectrum is important for agreement with
experiment.
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IV. CONCLUSION

An outstanding problem in the GW approach is that
its accuracy in predicting band gaps depends on how the
calculation is carried out. The simplest one-shot G0W0 works
perfectly for simple semiconductors such as Si and C, however
it underestimates Eg in materials with more localized valence
electrons, such as ZnO. The self-consistent GW calculation
tends to overestimate Eg for simple semiconductors, though
it predicts better Eg for oxides than G0W0 [24]. In this work
we carefully examined the effects of the plasmon-pole models,
off-diagonal matrix elements of self-energy, self-consistency
in eigenvalues and eigenvectors, and the vertex correction
on the band gap of Cmca-12 solid hydrogen. Our results
show a variation as large as ∼0.4 eV in Eg for solid H at
200 GPa when comparing the G0W0 gap (1.64 eV) with that of
self-consistent GW (2.03 eV). Including the vertex correction
reduces Eg to 1.80 eV, demonstrating that the error cancellation
between self-consistency and the vertex correction makes
the efficient G0W0 method unexpectedly accurate. Thus, the
present results also help explain the serendipitous success of
G0W0 in predicting band gaps in insulators despite its known
conceptual shortcomings. A ∼0.2 eV increase in band gap for
Cmca-12 hydrogen by consideration of the vertex correction,
self-consistency, and off-diagonal matrix elements of the
self-energy corresponds to a ∼10 GPa shift in metallization
pressure from 260 to 270 GPa. If the error due to using a PPM
is also corrected, we expect the transition pressure to be around
280 GPa.

Therefore, the total error of the G0W0 + PPM approach
is about 20 GPa in transition pressure (0.3–0.4 eV in Eg) for
solid H in phase III. Since the difference in transition pressures
between the G0W0 and DFT results is only 35 GPa, this rather
noticeable error due to various approximations involved in
GW calculations should pose a caution to the reliability of the
widespread G0W0 + HL PPM method for solid hydrogen and
similar electronic systems.

The metallization of solid hydrogen at low temperature
might occur in another more stable crystal structure than
Cmca-12, which has not been confirmed experimentally. That
possibility is still a matter of debate. We believe that the
QP electronic structure and the metallization pressure for
any new crystal structure can still be computed reliably with
perturbative G0W0 using a plasmon-pole model. The work of
Lebegue et al. [21] has shown that differences in metallization
pressure between phases is typically larger than the 20 GPa
error we attritube to G0W0. Because of the similar chemical
environment between competing crystal structures, we expect
our conclusions regarding the accuracy of G0W0 to hold across
phases. Lebegue’s G0W0 investigation of metallization for
several phases of solid H could reasonably be extended to
study several additional crystal structures for possibly better
experimental verification.

Previous work has shown excellent agreement in op-
tical properties of semiconductors and insulators between
theoretical results obtained with the BSE and experimental
results [29,51,53,54]. Therefore, we expect our present BSE
calculations on absorption spectra to help identify crystal
structures of solid H using optical processes in addition to
x-ray scattering. We find that the electron-hole interaction in

Cmca-12 is relatively weak with Eb decreasing from 66 meV
at 100 GPa to 12 meV at 200 GPa, but the excitonic effects
still substantially modify the optical absorption compared to
the GW -RPA results. Similar to the prediction of metalliza-
tion pressures, optical-absorption spectra including excitonic
effects for several competitive crystal structures could be
calculated to provide a useful comparison to experiment.
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APPENDIX: PLASMON-POLE MODELS

In the plasmon-pole models of Godby/Needs and Hybert-
sen/Louie, [17,47,57] the real and imaginary parts of the
dielectric function take the form

Re
[
ϵ−1

GG′(q,ω)
]

= δGG′ +
%2

GG′(q)
ω2 − ω̃2

GG′(q)
,

Im
[
ϵ−1

GG′(q,ω)
]

= AGG′(q)δ{[ω − ω̃GG′(q)]

− δ[ω + ω̃GG′(q)]}. (A1)

ω̃GG′(q) is the plasmon frequency with effective amplitude
AGG′(q), and %2

GG′(q) = −AGG′ (q)ω̃2
GG′(q). In the GN case,

the plasmon-pole parameters are chosen to reproduce the be-
havior of the actual ϵ−1

GG′(q,ω) in the static limit (ω = 0) and at
one finite imaginary frequency. For the HL PPM, a generalized
f -sum rule is enforced to determine the parameters.

In the PPM of von der Linden and Horsh [48], the dielectric
function is expressed as

ϵ−1
GG′(q; 0) = δGG′ +

∞∑

i=1

Uq,i(G)
[
ϵ−1
i (q) − 1

]
U ∗

q,i(G
′),

(A2)

where U is the matrix formed by the eigenvectors of the inverse
dielectric function. The remaining quantities are determined
by

ϵ−1
i (q,ω) − 1 = zi(q)

ω2 − [ωi(q)2 − iδ]2
,

zi(q) =
ω2

pl

ρ(0)

∑

G,G′

U ∗
q,i(G)

(q + G) · (q + G′)
∥q + G∥∥q + G′∥

×ρ(G − G′)Uq,i(G′),

ω2
i (q) = zi(q)

1 − ϵ−1
i (q)

; (A3)

ωpl is the free-electron plasma frequency ω2
pl = 4πρ(0). The

last two relationships are determined by the Johnson sum rule.
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The PPM of Farid and Engel [49] is obtained by
diagonalizing

χ̃ (q; ω) ≡ [ϵ2M−1(q) + χ−1(q; 0)]−1, (A4)

where MGG′(q) ≡ −(2/π )χ (1)
GG′(q) and χ

(1)
GG′(q) is the first

energy moment of the polarizability. χ̃(q; ω) is constructed
to match χ (q; ω) at ω = 0 and and has the correct asymptotic
behavior as |ω| → ∞.
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