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ABSTRACT

Metal halide perovskites possess unique atomic and electronic configurations that endow them with high
defect tolerance and enable high-performance photovoltaics and optoelectronics. Perovskite light-emitting
diodes have achieved an external quantum efficiency of over 20%. Despite tremendous progress,
fundamental questions remain, such as how structural distortion affects the optical properties. Addressing
their relationships is considerably challenging due to the scarcity of effective diagnostic tools during
structural and property tuning as well as the limited tunability achievable by conventional methods. Here,
using pressure and chemical methods to regulate the metal off-centering distortion, we demonstrate the
giant tunability of photoluminescence (PL) in both the intensity (>20 times) and wavelength

(>180 nm/GPa) in the highly distorted halide perovskites [CH3;NH;Gel3, HC(NH, ), Gel;, and CsGel; ].
Using advanced in situ high-pressure probes and first-principles calculations, we quantitatively reveal a
universal relationship whereby regulating the level of off-centering distortion towards 0.2 leads to the best
PL performance in the halide perovskites. By applying this principle, intense PL can still be induced by
substituting CH;NH;* with Cs* to control the distortion in (CH3NHj3 )1 ,Cs,Gel;, where the chemical
substitution plays a similar role as external pressure. The compression of a fully substituted sample of
CsGel; further tunes the distortion to the optimal value at 0.7 GPa, which maximizes the emission with a
10-fold enhancement. This work not only demonstrates a quantitative relationship between structural
distortion and PL property of the halide perovskites but also illustrates the use of knowledge gained from
high-pressure research to achieve the desired properties by ambient methods.

Keywords: halide perovskites, high pressure, off-centering distortion, optical properties, lone-pair

electrons, quantitative relationship

INTRODUCTION
Halide perovskites have exhibited extraordinary

exposure and surface passivation [2-9]. Despite the

tremendous progress in exploring and optimizing

electronic and optical properties including high halide perovskites in the past several years, many
. . o Tipoes fundamental challenges need to be addressed in

absorption coeflicients, long carrier lifetimes and

large charge diffusion lengths, that lead to a range

of applications in low-cost and high-efficiency pho-

order to further refine the design principles for ex-
cellent properties and thus fully utilize their unique
functionalities for future technological applications.

tovoltaic devices, light-emitting diodes, lasers and
) 18 & ’ For example, the intensity of light emission has been

photodetectors [1-5]. Bright photoluminescence
(PL) has been achieved in lead halide perovskites
and further enhancements have been realized by
compositional, dimensional and structural modi-
fications, as well as post-treatments such as light

reported to be related to the structural distortion
of perovskite structures [5,10,11], yet without a
systematic investigation of the structure-property
relationships. Achieving a deeper understanding
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Figure 1. Crystal structure of MAGels in comparison with
the Pb/Sn analog. MAGels crystallizes in a rhombohedral
structure with a large distortion of Gelg octahedra which
is due to the displacement of Ge along all the three
directions of |-Ge-l bonds in the octahedron (i.e. along
the normal direction of octahedral face). Such distortion
creates two sets of short and long Ge-l bonds with a length
difference as high as 24%. In comparison, both MAPbl; and
MASnNI; perovskites have a tetragonal structure, where the
structural distortion is minor.

requires suitable material systems in combination
with advanced in situ/operando characterization
tools.

Unlike the Pb and Sn congeners, germanium
halide perovskite (CH3;NH3Gel;) crystallizes in
a polar space group R3m. The large size difference
and electronegativity mismatch between Ge’"
and I gives rise to high polarizability and large
structural distortion [12,13]. The structure of this
perovskite, shown in Fig. 1, has a highly distorted
Gels octahedron, where Ge stays away from the
proper center and forms three short Ge-I bonds and
three long Ge:---I bonds. This metal off-centering
is a consequence of the strong stereochemical
activity of the 4s* lone-pair electrons in Ge>*. The
two sets of Ge-I bond distances (2.75 and 3.41 A)
exhibit a large difference of 24%. In comparison,
the differences in the (Pb/Sn)-1 bond lengths in the
Pb and Sn compounds are 3% and 5%, respectively
[6]. Consequently, the highly distorted structure of
CH;NH;Gelj; (hereafter MAGely; ) leads to unusual
characteristics and unique optical properties. For
instance, MAGel; has an anomalously wider band
gap of 1.9 eV, relative to 1.3 eV for MASnl; and
1.6 eV for MAPbI; [12-14]. Moreover, MAGel;
shows no detectable PL at ambient conditions
while both the Sn and Pb compounds exhibit
strong PL. The large degree of distortion in the
Ge perovskite, setting it apart from the Sn and
Pb analogs, provides tremendous new opportu-
nities for the fundamental understanding of the
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interplay between the structural distortion and
properties.

The principal mechanism generating the multi-
functional nature of halide perovskites is the
competitive interplay between the electron, orbital
and atomic lattice degrees of freedom across similar
energy scales [15-18]. These degrees of freedom
can be effectively tuned by applying external stimuli,
including temperature, pressure, and electric and
magnetic fields. Pressure, as a thermodynamic
parameter, can effectively modify the lattice and
electronic configurations of materials without
changing their chemical compositions [19-22].
Pressure processing has not only been used to fur-
ther our fundamental understanding and discover
new physics, but also enabled the exploration of
novel materials such as metastable nanophases
[23-28]. The pressure effects should be more
dramatic in the halide perovskites because of their
dynamically flexible and soft lattices [29-34]. Here,
we report the emergence of strong PL with giant tun-
ability of the emission wavelength and intensity in
germanium halide perovskites under compression.
By employing in situ high pressure and synchrotron
techniques along with first-principles calculations,
we reveal the relationship between the structural
distortion and PL property of these materials, and
elucidate the underlying mechanisms of the dra-
matic pressure-induced changes. Using the gained
knowledge, we successfully obtained mixed-cation
perovskites with emergent high-pressure proper-
ties by normal synthetic methods, that is, using
chemical tailoring to simulate the effects of external
pressures.

RESULTS AND DISCUSSION

Rhombohedral MAGel;, which does not have a
detectable emission at ambient conditions [12],
exhibits an emergent and tunable PL by applying
external pressure. Figure 2a and b shows the in situ
PL spectra under various pressures during compres-
sion and decompression, respectively. Figure 2c
shows the two-dimensional mappings of the PL
signal at eight selected pressures, where the brighter
color indicates the higher emission intensity. A clear
PL signal emerges at just 0.3 GPa. The intensity
increases dramatically with pressure and reaches the
highest value at 1.1 GPa and subsequently decreases
with further pressurization. A volcano shape of the
pressure-dependent PL intensity is observed during
both compression and decompression (Fig. 2d),
where an increase of 20 times in the intensity can
be achieved when the pressure increases from 0.3 to
1.1 GPa.
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Figure 2. Pressure-dependent photoluminescence properties of MAGels. /n situ PL spectra during (a) the compression and
(b) decompression cycles. The insets show the zoomed-in spectra at 1 atm and 0.3 GPa. (c) Two-dimensional mappings of
the PL signal at eight selected pressures, where the brighter color indicates the higher emission intensity. (d) The pressure
dependence of spectrally integrated PL intensity. The highest emission is achieved at around 1 GPa. (e) PL peak position
as a function of pressure, showing giant tunability of over 180 nm/GPa. For comparison, the tunability of the emission

wavelength for the Pb analog is less than 40 nm/GPa.

Intriguingly, the PL peak position of MAGels
changes dramatically with pressure, from below
700 nm at 0.3 GPa to over 1400 nm at 4.2 GPa
(Fig. 2a and e). By fitting the pressure-dependent
peak positions, the emission wavelength can be
tuned by more than 180 nm/GPa. Such a tunability
is enormous compared to the reported values of
other halide perovskites as well as other known
medium band-gap semiconductors. For instance,
the pressure dependence of PL in MAPDIj; is less
than 40 nm/GPa (Fig. S1) [35]. The giant tunability
of MAGels is presumably due to the large degree
of off-centering distortion in the Gels octahedron
with three short and three long Ge-I bonds (Fig. 1).
Such a highly sensitive pressure response together
with the good linear relationship between the PL
peak position and the pressure (Fig. 2e) raises the
prospect of applying this material in precise pressure
and stress detectors.

The unique lattice and electronic structures of
the MAGel; perovskite are believed to be closely
linked to the significant pressure dependence of its
optical properties. We first traced the evolution of
the crystal structure under high pressure using in situ
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synchrotron X-ray diffraction (XRD). Experimental
details and analysis methods can be found in the
Supplementary Data. Figure S2 shows the selected
single-crystal XRD images of MAGel; collected
at ambient pressure, 1.1 GPa and 2.5 GPa. By
analyzing the XRD data, two steps of lattice change
are observed, an anisotropic variation of the Ge-I
bond distances in the low-pressure region followed
by a phase transformation at higher pressures.
Upon compression, the long Ge-I bonds in
MAGel; perovskite shorten considerably, whereas
the short bonds elongate very slightly (Fig. 3a and
b), resulting in an anisotropic variation. That is,
the pressure pushes the Ge ion toward the center
of Gels octahedron along the normal direction of
the octahedral face, making the octahedron less
distorted. Such a Ge centering process reduces the
bond-length difference and moves the rhombo-
hedral R3m structure along a reaction coordinate
towards a higher crystalline symmetry at high pres-
sures. At 1.1 GPa, the long and short bond distances
change from 3.41 and 2.75 A to 3.21 and 2.79 A,
respectively, in which their difference is reduced to
15% from the initial value of 24% (Fig. $3). With
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Figure 3. Pressure-induced evolution of the lattice structure in MAGels. (a) Schematic illustration of the Gelg octahedron
at ambient pressure, 1.1 GPa and 2.5 GPa. An anisotropic variation of the Ge-I bond distance in the low-pressure region
and a pressure-induced phase transformation in the higher-pressure region are observed. (b) Pressure-dependent variations
of the Ge-I bond lengths and D values, where D describes the degree of off-centering distortion in the Gelg octahedron.
The D value of MAGels is 0.32 at ambient pressure, while those of MASnl; and MAPbI; are 0.03 and 0.01, respectively,
plotted as the up and down triangles. The long Ge-l bonds shorten considerably while the short bonds elongate very slightly
during compression, which reduces D to 0.22 at 1.1 GPa. With further pressurization, abrupt changes in both bonds and
D are observed at 2.5 GPa, corresponding to the pressure-induced phase transition from rhombohedral A3m to tetragonal
PAbm. (c) PL intensity as a function of D. With the decrease of the D value during compression, the PL strengthens first,

reaches the maximum at D ~ 0.2, and then weakens.

turther pressurization, an abrupt change in both sets
of Ge-Ibonds is observed at 2.5 GPa, corresponding
to the pressure-induced phase transition from
rhombohedral R3m to tetragonal P4bm (Figs S2
and S4). It is noted that the crystal structure of
MAGel; under high pressure is similar to that of the
Sn and Pb perovskites at ambient pressure (Figs 1
and 3a). Upon decompression, the released sample
possesses the same crystal structure and lattice
constants as the original one (R3m), as shown in
Fig. S5. The variations in XRD peak intensity and
width before and after high-pressure treatments
indicate the change of orientation and crystallinity,
which is due to the pressure-induced phase transi-
tion and recrystallization [20,29]. Raman spectra of
MAGelj; collected at different pressures confirm the
compression-induced structural variations. As the
Raman spectra shown in Fig. S6, the peaks weaken
and broaden significantly above 2.0 GPa, and the
features become similar to that of the Pb perovskites,
indicating that the lattice dynamics also become
similar [11,36].
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To describe the degree of off-centering distor-

tion of the MIs (M = Ge, Sn and Pb) octahedron,
3 la; —b;|

we introduce a D parameter, D =) ;_, P
where a; and b; refer to the short and long M-I bond
distances, respectively, in one direction (see Supple-
mentary Data for details). The D value of MAGel;
at ambient pressure is 0.32, over 10 times larger
than those of MASnI; and MAPbI; whose values
are 0.03 and 0.01, respectively [ 14]. With increasing
pressure, the D parameter reduces to 0.22 at 1.1 GPa
and further drops to 0.04 after transformation to
a tetragonal structure at 2.5 GPa (Fig. 3b). The
D value of the high-pressure tetragonal MAGel;
is essentially the same as those of the Sn and Pb
iodide perovskites. The PL intensity as a function
of the distortion D is plotted in Fig. 3c. With the
decrease of D during compression, the emission first
strengthens significantly, reaches the maximum at
D ~ 0.2, and then weakens with a further decrease
of the distortion. The changing profile suggests that
an optimized distortion would lead to the strongest
PL in MAGels. To the best of our knowledge, this
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Figure 4. The relationship between emission properties and the off-centering distortion. (a) PL intensity as a function of the distortion D in the
halide perovskites, which describes the pressure-tuned MAGels (sphere), FAGel; (diamond) and CsGels (solid star), as well as the chemical-tailored
MACs,Gels (open star). With the decrease of D during compression, the PL intensity increases first, reaches the maximum at D ~ 0.2, and then
decreases. The chemical substitution of Cs in MAGels follows a similar trend up to the D value of 0.25 for CsGels, then pressure further tunes the distor-
tion and enhances the photoluminescence. (b) The pressure-tuned off-centering distortion of MAGels, FAGel; and CsGels. The D values corresponding
to the PL emergence and maximum are consistent for these compounds, which are around 0.3 and 0.2, respectively. (c) The calculated electronic
structures of MAGel; at ambient pressure, 1 GPa and 3 GPa. For the tetragonal phase at high pressure, the direct band gap turns into an indirect type.
(d) The calculated density of states (DOS) based on different pressures and distortion D values. Pressure-induced distortion suppression and lattice
contraction together contribute to the band gap narrowing. (e) PL spectra of MA;4Cs,Gels with different Cs concentrations at ambient conditions.

behavior has never been observed in other halide
perovskites since their distortion cannot be tuned
over such a wide range as it can be in MAGel;. The
highly distorted Gels octahedra enable the attain-
ment of an otherwise unexplorable structural region,
therefore providing more tuning possibilities for
both desired properties and a better understanding
of the structure-property relationship.

The close relationship between the structural dis-
tortion and tunable optical properties can be further
demonstrated in the formamidinium germanium
iodide (FAGel;) analog, which also crystallizes in
a rhombohedral structure while exhibiting an even
larger off-centering distortion than MAGel;. The
sizeable distortion brings two sets of Ge-I bond dis-
tances (2.73 and 3.58 A) with a difference of 31% in
FAGel; (Fig. S7). From in situ XRD measurements,
the D value is determined to be 0.40 at ambient con-
dition and decreases during compression (Fig. S8).
FAGel; also shows no PL signal at ambient condi-
tions, but it can be turned on and tuned by pressure
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(Fig. S9), similar to MAGel;. The pressure thresh-
olds for the appearance of PL and the attainment of
maximum intensity in FAGel; are 1.0 and 1.9 GPa,
respectively, which are higher than the correspond-
ing pressures of 0.3 and 1.1 GPa for MAGels. This
is conceivable considering that the larger formami-
dinium molecule creates more distorted octahedra
in FAGel;. The PL intensity as a function of distor-
tion D is shown in Fig. 4a (orange diamond shape).
In line with the behavior of MAGel; during com-
pression, the PL emerges and strengthens, reaching
the maximum value at D & 0.2, and weakens there-
after with further decreasing the distortion. The
same trend of PL intensity vs. D value revealed for
both MAGel; and FAGel; confirms the existence of
an optimal distortion which leads to the highest PL
efficiency in these halide perovskites. It is worth not-
ing that although the pressures corresponding to the
PL appearance and the maximum emission for these
two compounds are different, the D values are con-
sistent at about 0.3 and 0.2, respectively, as shown
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in Fig. 4b. In addition, the spectacular changes
observed in the PL wavelengths as a function
of pressure are also reflected in the pressure-
dependent absorption spectra (Fig. S10), revealing
the profound effects of pressure on the electronic
structure. Therefore, off-centering distortion could
be an effective order parameter for optimizing the
optoelectronic properties of halide perovskites.

The XRD results show that pressure pushes the
Ge toward the center of the Gels octahedron, mak-
ing the octahedron less distorted. This process sup-
presses the stereochemical activity of the lone-pair
electrons and induces considerable modifications in
the conduction and valence bands. Theoretically cal-
culated electronic structures of MAGel; at ambient
pressure, 1 GPa and 3 GPa are shown in Fig. 4c. The
band gap narrows significantly under compression,
consistent with our experimental observations
(Fig. S10). Along with the pressure-induced phase
transition, the nature of the band gap turns slightly
indirect, which likely contributes to the decreased
PL intensity in the higher-pressure region. The cal-
culated density of states (DOS) based on different
distortion D values are given in Fig. 4d and Fig. S11,
which suggest that distortion plays a critical role in
the electronic structure of MAGel;. By solely con-
sidering the gradual suppression of the off-centering
distortion (without considering the pressure-
induced lattice contraction), the conduction band
minimum (CBM) and valence band maximum
(VBM) shift synchronously until the D value drops
to 0.2 (Fig. S11). At this stage, the distortion sup-
pression (Ge centering) does not contribute to the
band gap narrowing. By pushing the Ge*" more to-
wards the octahedral center, the CBM moves faster
than the VBM and this results in the further narrow-
ing of the band gap. Therefore, the highly distorted
Gelg octahedron, caused by the large off-centering
of Ge*™, widens the band gap of the Ge perovskites.
This explains the anomaly of the larger-than-
expected band gap of MAGel; (1.9 €V) in compar-
ison to MASnI; (1.3 V) and MAPbI; (1.6 eV).

In addition to the band structure, defect states
could also influence the optical properties of the
halide perovskites. Detailed analysis and discussion
are given in the Supplementary Data. As a result
of the band gap narrowing caused by the pressure-
induced distortion suppression and lattice contrac-
tion, the harmful trapping states lying in the band
gap can be buried into the bands and thus, be deac-
tivated. This argument is schematically illustrated in
Fig. S13 and is supported by theoretical simulations
(Fig. S14). The compression passivates the trap
states and makes the Ge halide perovskite more de-
fect tolerant, which activates the radiative emission.
Moreover, the large polarons, forming from charge

Page 6 of 8

carriers dressed by long-range lattice deformation
in halide perovskites [37-39], also contribute to
the change of PL intensity under high pressure. The
radiative recombination rate from the energetically
stabilized large polarons is reported to be lower than
that from free carriers [38], resulting in an inefficient
emission from the e-h polaron states. Upon com-
pression, the reorientational motion of molecular
cations slows down and the lattice becomes stiffer.
Both trends would lead to the reduced coupling of
the motion of organic cations with the deformation
of the inorganic framework, giving rise to the desta-
bilization of the large polarons. Pressure changes
the dynamic equilibrium between the large polarons
and the free carriers, which partially contributes to
the enhanced PL of the hybrid perovskites. There-
fore, the observed variations of the PL property can
be elucidated by comprehensively considering the
contributions from the pressure-induced distor-
tion suppression, trap state deactivation, polaron
destabilization and phase transition.

Based on our understanding of the underlying
mechanisms of the dramatic pressure-induced
changes in Ge halide perovskites, we purpose-
fully substituted the MA™ ions in MAGel; with
smaller Cs' to simulate the pressure effects. This
smaller A-cation substitution would lower the
Ge?" off-centering level and reduce the structural
distortion in the halide perovskites. Scanning
electron microscopy images and the corresponding
energy dispersive spectroscopy mappings of the
Cs-substituted samples are shown in Fig. S15, which
demonstrate the uniform distribution of Cs. PL mea-
surements were performed on the MA;Cs,Gel;
samples with Cs contentx = 0, 0.2, 0.4, 0.6, 0.8 and
1. Impressively, the PL can be induced by Cs sub-
stitution, and the emission intensity increases with
the Cs content, as shown in Fig. 4e. The distortion
D of these materials decreases from 0.32 to 0.25 as
Cs increase from 0 to 1 (Fig. S16), as determined
by XRD measurements. With the decrease of the
D value by Cs substitution, the PL intensity of
MA, ,Cs,Gel; increases, which complies with the
principle uncovered by the high-pressure exper-
iments, shown as the open-star points in Fig. 4a.
Coincidentally, a parabolic trend of the optical band
gap versus the organic A cation size has been re-
vealed recently in Ruddlesden-Popper perovskites,
which can be attributed to the changes of chemical
pressure applying to the inorganic framework [40].

The chemical substitution triggers and enhances
the PL by suppressing the distortion, yet has not
reached the optimal level according to the newly
discovered structure-property relationship. For this
reason, high-pressure experiments were performed
on CsGels, whose D value is 0.25, to further tune

1202 4890100 Z| uo 1s8nb Aq 81871 09/882EBMU/E/8/3]011IB/ISU/WOD dNoolWwapeoe//:sdiy Woll papeojumod



Natl Sci Rev, 2021, Vol. 8, nwaa288

the off-centering distortion towards the maximum
PL. As shown in Fig. S17, the emission increases
significantly with increasing pressure, reaching the
peak value at 0.7 GPa. Notably, the PL intensity
of CsGel; is enhanced by more than ten times
under high pressure in comparison to its initial
value at ambient conditions. Similar to MAGel; and
FAGel;, the D value of CsGel; decreases during
compression (Fig. S18). The relationship between
the PL intensity and the tunable distortion D of all
these halide perovskites collapses on the same curve,
as shown in Fig. 4a, where the experimental data of
CsGel; are plotted as solid stars. Specifically, the
pressure-regulated distortion maximizes PL when
D reduces to around 0.2 during compression, fol-
lowing the exact same trend as revealed in MAGel;
and FAGel;. Although the pressures corresponding
to the brightest PL for these halide perovskites are
different, the optimal distortion D value is always
around 0.2, as summarized in Fig. 4b. Therefore, the
distortion is a suitable variable that can be regulated
for the desired properties of halide perovskites.

CONCLUSION

By regulating the octahedral distortion in halide
perovskites using pressure engineering and chem-
ical substitution, we have reached an otherwise
unexplorable structural region for tuning and
probing properties. Compression induces strong
photoluminescence with impressive tunability of
both emission intensity and wavelength in the
highly distorted germanium halide perovskites. For
both MAGel; and FAGels, the PL intensity shows
a 20-fold boost within a 1 GPa increase in pressure;
the emission wavelength exhibits a pressure depen-
dence of over 180 nm/GPa, 4-5 times higher than
reported values of other halide perovskites. The
in situ high-pressure probes, in combination with
first-principles calculations, reveal a universal rela-
tionship between the off-centering distortion and PL
property of halide perovskites, and demonstrate that
regulating the distortion degree D towards 0.2 leads
to the brightest emission. Applying this principle
as a guideline, PL can be induced in MA ,Cs,Gel;
by chemical substitution using the smaller sized
Cs*, which decreases the off-centering distortion,
acting in a similar role to external pressures. The
compression of a fully substituted sample of CsGel;
further regulates the distortion to the optimal value
at 0.7 GPa, which maximizes the PL intensity with
a 10-fold increase. Our findings lay the groundwork
for the fundamental understanding of the structure-
property relationship in halide perovskites and open
new paths for materials design and optimization by
leveraging their distortion degree of freedom.
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