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Introduction

Rare-earth (R) mono antimonides RSb with simple NaCl-type 
structure are excellent candidate for both experimental and 
theoretical study. The rare-earths have different occupation 
numbers for the inner 4f  shell, giving rise to rich magnetic and 
electronic properties [1–28]. In terms of electronic structure, 
most RSb compounds are known as compensated semimetals, 
which consists of two hole FS (Fermi surface) pockets at the 
Brillouin zone (BZ) center Γ and one electron FS pocket at 
the BZ boundary X, with the conduction band mainly deriving 
from rare-earth 5d states and the valence band deriving from 
pnictogen 5p  states, respectively [14–18, 20–27].

RSb exhibits extremely large magnetoresistance (XMR), 
thus have potential applications such as spintronics devices, 
magnetic memory, and magnetic field sensors [14–20, 22, 

25–27, 29]. They also share similar magnetotransport prop-
erty with topological nontrivial semimetal, such as WTe2 [30], 
Cd3As2 [31, 32], TaAs [33], and NbP [34]. Therefore they 
are possible host of topologically nontrivial phases. Recently 
there are evidences for the existence of Dirac semimetal nodes 
or topological insulating gaps along Γ− X appears in LaSb 
[15, 17, 24]; unusual fourfold degenerate Dirac surface state 
in CeSb [20, 25, 26], and a Dirac-like structure at the Γ point 
in YSb, NdSb, and GdSb [18, 20]. The property of RSb is fur-
ther enriched by the report of antiferromagnetic (AFM) phase 
transition in CeSb, NdSb, SmSb, GdSb, TbSb, DySb, HoSb, 
and ErSb at low temperature [18, 20–22, 28].

Optical spectroscopy is a bulk-sensitive technique with 
high-energy resolution, which provide useful information 
about charge dynamics, carrier density and band structure 
of a material over a broad range of energy scales. Previous 
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Abstract
We report magnetic susceptibility, resistivity and optical spectroscopy study on single 
crystal sample DySb. It exhibits extremely large magnetoresistance (XMR), and a magnetic 
phase transition from paramagnetic (PM) to antiferromagnetic (AFM) state at about 10 K. 
A ‘screened’ plasma edge at about 4000 cm−1 is revealed by optical measurement, which 
suggests that the material has a low carrier density. With decreasing temperature, the 
‘screened’ plasma edge shows a blue shift, possibly due to a decrease of the effective mass 
of carriers. Notably, an anomalous temperature dependent midinfrared absorption feature is 
observed in the vicinity of the ‘screened’ plasma edge. In addition, it can be connected to the 
inflection point in the real part of the dielectric function ε1(ω), the frequency of which exactly 
tracks the temperature dependent ‘screened’ plasma frequency. This phenomena can be 
explained by the appearance of a coupled electron–plasmon ‘plasmaron’ feature.
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optical spectroscopy study on RSb (R  =  La, Ce, Pr, and Sm) 
show absorptions due to the p   −  d transition and additional 
ones whose intensity is proportional to the number of occu-
pied 4f  electrons [35]. The optical spectrum of CeSb in its 
magnetic ordered state is significantly affected by the Sb 
5p -Ce 4f  mixing effect [36]. In addition, absorptions due to 
a Kondo peak and which is related to virtual f   −  d excitation 
are observed in far infrared and infrared regions, respectively 
[37]. A hump at about 0.25 eV is observed in PrSb, GdSb and 
DySb, which is attributed to the intraband transition induced 
by the scattering between the spin of carriers and the localized 
magnetic moments at each site of rare-earth ion [38].

In this paper, we report magnetic susceptibility, resistivity 
and optical spectroscopy study on DySb, an isostructural com-
pound of LaSb but with the presence of 4f  electrons. Magnetic 
susceptibility shows a phase transition from paramagnetic 
(PM) to AFM state at about 10 K. Magnetoresistivity meas-
urements found that DySb exhibits large magnetroresistance 
at low temperatures. The optical spectroscopy study shows an 
increase of the plasma edge, i.e. and the ‘screened’ plasma 
frequency (ω∗

p ), with decreasing temperature, which is similar 
to LaSb [39]. In contrast to LaSb, an anomalous midinfrared 
absorption in R(ω) is observed in DySb. In addition, the real 
part of the dielectric function ε1(ω) has an inflection point, 
which is coincident with the temperature dependent ‘screened’ 
plasma frequency. This phenomenon can be explained by the 
appearance of the coupled electron–plasmon, that is ‘plas-
maron’ feature, probably due to the effect of 4f  electrons in 
DySb.

Experimental details

The DySb single crystals were grown by the flux method, sim-
ilar to the synthesis of LaSb [15]. Large pieces of single crys-
tals with shiny surfaces were obtained. The resulting crystals 
have dimensions of several millimeters. Room-temperature 
x-ray diffraction (XRD) measurements were performed on 
a PANalytical Empyrean diffractometer using Cu K α radia-
tion (λ = 1.5418 Å) in order to check the phase purity. The 
dc resistivity measurement was conducted on a commercial 
quantum design physical properties measurement system 
(PPMS) by a four-probe method with the electrical current 
parallel to the ab plane of the crystal. The magnetic suscep-
tibility χ(T) was measured by using the VSM option of the 
PPMS system. The temperature-dependent optical reflectance 
data were measured via a near-normal angle of incidence on 
Bruker 113v and Vertex 80v, on as-grown shinny surface of 
the single crystal from 120 to 20 000 cm−1. We obtain the 
reflectivity R(ω) by calibrating the signal against a reference 
gold/aluminum layer evaporated in situ on the sample surface 
and then get the real part of the optical conductivity σ1(ω) 
by the Kramers–Kronig analysis of R(ω). For the extrapola-
tion at low frequency, we used the Hagen–Rubens relation 
(R = 1 − A

√
ω). For the extrapolation on the high frequency 

side, we employed an extrapolation method with x-ray atomic 
scattering functions [40].

Results and discussions

Figure 1 shows the XRD patterns for the samples of DySb, in 
which only (0 0 l) peaks are observed, confirming high quality 
of the single crystal, which is consistent with previous reports 
[41].

Figure 2 shows the temperature dependence of the magn-
etic susceptibility χ of DySb under zero-field-cooled (ZFC) 
and field-cooled (FC) conditions, measured in a magnetic field 
of 0.1 T applied along the ab plane. There is no evident differ-
ence between the ZFC and FC curves, which is a common fea-
ture in paramagnetic and AFM state. At high temperatures, the 
χ(T) curve can be well fitted by the Curie–Weiss law (inset to 
figure 2) adopting the Curie Weiss temperature Θ = −7.8 K 
and the effective magnetic moment µeff = 10.6µB/Dy, which 
is consistent with previous results [41, 42]. A sharp peak 
develops at TN  =  10 K, signaling the onset of the AFM phase 
transition, consistent with earlier reports [42–44].

Figure 1. XRD pattern on the (0 0 l) surface of single crystal DySb.

Figure 2. The temperature dependent magnetic susceptibility 
[χ = M(T)/H] of DySb measured under ZFC and FC conditions. 
The black arrow indicate the phase transition from paramagnetic to 
AFM state. Inset: the reciprocal magnetic susceptibility 1/χ versus 
T of DySb.
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Figure 3 shows the temperature dependent resistivity ρ  of 
DySb at selected magnetic fields. At zero magnetic field, the 
resistivity decreases continuously upon cooling until 10 K, 
then it demonstrates a remarkable drop, which is coincident 
with the AFM phase transition temperature. Therefore the 
anomaly feature in resistivity can be ascribed to the magn-
etic phase transition. In an applied magnetic field, there is a 
positive magnetoresistivity, which is more significant at low 
temperatures. At H  =  2 T, the resistivity first shows a drop 
initially and then followed by an increase. For magnetic field 
H � 5 T, the resistivity drop around 10 K is no longer visible 
and instead, it increases markedly but starts to saturate below 
5 K. This behavior indicates the XMR phenomenon. To fur-
ther illustrate the XMR phenomenon, we plot magnetoresist-
ance (MR) versus magnetic field (B) at different temperatures 
for DySb in the inset of figure  3, where MR is defined as 
MR = (ρ(B)− ρ(0))/ρ(0). The MR reaches as large as 
1.08 × 104% at 2 K and 9 T, without any sign of saturation, 
which is consistent with the XMR behavior revealed in [41]. 
Similar XMR effect is previously reported in AFM semimetal 
NdSb [18] and CeSb [20, 22, 25, 26].

Figure 4 shows the reflectance spectra R(ω) of DySb at 
selected temperatures in the frequency range from 120 to 
8000 cm−1. As seen, R(ω) at low frequency are rather high, 
approaching unity at zero frequency limit at all temperatures, 
and increase with decreasing temperatures. This is a typical 
metallic response, consistent with the resistivity data at zero 
magnetic field. With increasing frequency, R(ω) decreases, 
reaching a minimum value at about 4000 cm−1 at 300 K, 
usually referred to the ‘screened’ plasma edge [39, 45–53]. 
The relatively low frequency of the ‘screened’ plasma edge 
might be ascribed to its semimetal response. As temperatures 
decreased, the ‘screened’ plasma edge shifts to higher fre-
quency (i.e. a blueshift), reaching about 4700 cm−1 at 10 K. 
These results are similar to the reported optical spectroscopy 
of its isostructural compound LaSb [39].

In contrast to the simple band behavior expected for a 
low carrier density system like LaSb [39], we find three 

peak-like midinfrared absorption features in the vicinity of the 
‘screened’ plasma edge, indicated by red arrows in figure 4. 
The first two absorption features occur around the ‘screened’ 
plasma edge, which are centered at 3650 cm−1 and 4150 cm−1, 
respectively. In addition, their central frequency show little 
shift with temperature. The origin of these two peak-like fea-
tures might be intraband transition induced by the exchange 
interaction between the spin of carriers and the localized 
magn etic moment at each site of rare-earth ion [38]. However, 
the third absorption feature occurs at higher energies than the 
‘screened’ plasma edge, which centered around 5200 cm−1 
appears to move to higher energies as the temper ature is low-
ered. The absorption feature at such a high energy is usually 
be ascribed to the interband transitions. However, one would 
not expect a prominent temperature dependence for an inter-
band transition. So the temperature-dependent peak-like fea-
ture must have a different origin.

In order to get further information about the temperature-
dependent peak-like feature around the ‘screened’ plasma 
edge, we plot the real parts of the dielectric function ε1(ω) as 
a function of frequency at different temperature, as shown in 
figure 5. In ε1(ω), the zero-crossing frequency corresponding 
to the ‘screened’ plasma edge in the reflectance spectrum, rep-
resents the ‘screened’ plasma frequency ω∗

P. As temperature 
decreases, the ‘screened’ plasma frequency increases (figure 
6(a)), which is in good agreement with the reflectance plasma 
minimum. The inflection point ωτ  in ε1(ω) at about 5200 cm−1 
corresponding to the third absorption feature in R(ω), (shown 
as the red arrows in the inset to figure  5) also increases as 
temper ature decreasing. This inflection behavior may antici-
pate a second zero crossing of ‘1’, which could result in a 
characteristic ‘second plasma edge’.

The temperature dependent inflection point ωτ  in ε1(ω) is 
reminiscent of the temperature dependent ‘screened’ plasma 
edge. In fact, it almost exactly tracks the temperature depend-
ence of the ‘screened’ plasma frequency ω∗

P, as shown in 

Figure 3. The temperature dependent resistivity ρ  of DySb at 
selected magnetic field.

Figure 4. The temperature dependent R(ω) in the frequency range 
from 120 to 8000 cm−1. The red arrows indicate the position of the 
three peak-like midinfrared absorption features. The blue arrow 
indicates the shift of the ‘screened’ plasma edge.
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figure 6(b), where we plot the frequency of the inflection point 
ωτ  versus ω∗

P. Based on the figure 6(b), we can identify that ωτ  
show almost a linear dependence of ω∗

P.
These special phenomena around the ‘screened’ plasma 

edge, might be ascribed to the appearance of coupled elec-
tron–plasmon ‘plasmaron’ feature. This is an electron-boson 
interaction similar to that considered in the context of elec-
tron–phonon or electron–magnon scattering. Such an interac-
tion has been anticipated by Lundqvist [54, 55], and observed 
in quasi-freestanding graphene by angle-resolved photoemis-
sion spectroscopy (ARPES) [56], what’s more, intrinsic ‘plas-
maron’ also appear in warm graphene [57]. The ‘plasmaron’ 
feature in quasi-freestanding graphene and warm graphene 
share some similarities, such as: in the larger x  =  q/T region, 

the ‘plasmaron’ energy is always below the fermion energy; 
and the ‘plasmaron’ and fermion are the same at q  =  0. 
However, they also have many sharp differences, thermal 
mass, fermion channel, ‘plasmaron’ channel and the disper-
sion of ‘plasmaron’ et al.

Optically excited ‘plasmaron’ feature have rarely been 
observed, which makes the observation particularly interesting. 
In the case of elemental bismuth, a ‘plasmaron’ excitation is 
observed at a higher energy than the plasma edge [46, 47].  
For Na3Bi the ‘plasmaron’ excitation is observed below the 
the plasma edge [58]. DySb is another example besides bis-
muth and Na3Bi, which show clear optical evidence for a 
‘plasmaron’ feature. Bismuth, Na3Bi and DySb have many 
similarities, such as small FS, low carrier density and high 
Fermi velocity. These observations suggest that the ‘plas-
maron’ feature are perhaps more ubiquitous, and open up the 
possibility of further investigation for such collective modes 
in the various types of low carrier density systems.

However, the ‘plasmaron’ feature is not observed in LaSb 
[39], the isostructural compound of DySb. Note that Dy has 
4f  electrons while f  electrons is absent in La. The different 
4f  occupation may give rise to different magnetic properties 
and electronic structures. In addition, DySb is a typical Ising 
antiferromagnet [2, 42, 43, 59–62], while LaSb is an electron–
hole compensated semimetals [14, 16]. The difference in 4f  
electron occupation and ground state may have different influ-
ence on the band structure of the two compounds, which could 
be the reason for the different features in the vicinity of the 
‘screened’ plasma edge.

Nevertheless, the ‘screened’ plasma frequency ω∗
p  of DySb 

increases with decreasing temperature, similar to LaSb [39]. 
We know that the ‘screened’ plasma frequency ω∗

p  is linked 
to the plasma frequency ωp by the relation ω∗

p = ωp/
√
ε∞ . 

The plasma frequency satisfies the equation ω2
P = 4πne2/m∗, 

where n is the carrier density, m* is the effective mass, and ε∞ 
is the dielectric constant at high frequency. So the increase in 
the ‘screened’ plasma frequency indicates an increase of n/m*. 
It is reported in HoSb that the carrier density decreases as the 
temperature decreases from 300 to 10 K [63]. Since DySb is 
an isostructural compound of HoSb, the carrier density of the 
former could have similar temperature dependence as that of 
latter. Therefore, the fact that the ‘screened’ plasma frequency 
of DySb increases with decreasing temperature could be 
ascribed to the reduction of effective mass m*. Furthermore, 
the reduction of effective mass m* can be explained by the 
change of dispersion near EF and a ‘three-band’ model that is 
at high temperatures heavier states lying close to EF become 
thermally populated leading to a reduction in ω∗

P, like the 
explanation in LaSb [39].

Conclusion

In summary, we report magnetic susceptibility, resistivity and 
optical spectroscopy study on single crystal sample DySb. It 
exhibits an AFM phase transition at TN  =  10 K and XMR is 
observed at low temperatures. Optical measurements indicate 
that the material has a low carrier density and the screened 

Figure 5. The real part of the dielectric functions ε1(ω) of DySb in 
the frequency range from 0 to 8000 cm−1. The red arrows indicate 
the position of the three peak-like midinfrared absorption features. 
Inset: the expanded plot of ε1(ω) from 2000 to 6000 cm−1.

Figure 6. (a) The ‘screened’ plasma frequency obtained from the 
peak position of Im[−1/ε(ω)] of DySb. (b) A parametric plot ωτ  
versus ω∗

P obtained from the real parts of the dielectric function 
ε1(ω).
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plasma edge increases with decreasing temperature. Most 
remarkably, our study reveals several special features in the 
vicinity of the screened plasmon frequency, which could 
be due to the appearance of the coupled electron–plasmon 
‘plasmaron’.
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