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Abstract Density of silicate melt dictates melt migration and establishes the gross structure of Earth's
interior. However, due to technical challenges, the melt density of relevant compositions is poorly
known at deep mantle conditions. Particularly, water may be dissolved in such melts in large amounts and
can potentially affect their density at extreme pressure and temperature conditions. Here we perform
first‐principles molecular dynamics simulations to evaluate the density of Fe‐rich, eutectic‐like silicate melt
(E melt) with varying water content up to about 12 wt %. Our results show that water mixes nearly
ideally with the nonvolatile component in silicate melt and can decrease the melt density significantly. They
also suggest that hydrous melts can be gravitationally stable in the lowermost mantle given its likely
high iron content, providing a mechanism to explain seismically slow and dense layers near the
core‐mantle boundary.

Plain Language Summary Planetary‐scale melting is ubiquitous after energetic impacts early in
Earth's history. Therefore, determining key melt properties, such as density, is of great significance to
better understand Earth's formation and subsequent evolution. In this study, we performed state‐of‐art
first‐principles molecular dynamics simulations to examine the density of deep mantle melts, namely,
hydrous Fe‐rich silicate melts. We find that such hydrous melts can be gravitationally stable near Earth's
core‐mantle boundary given their likely high iron content. This has great implications for Earth's
thermochemical evolution, as well as Earth's volatile cycle.

1. Introduction

Magma oceans are thought to prevail during Earth's accretion after large impacts (e.g., Tonks & Melosh,
1993). The physical properties of relevant silicate melts are key to our understanding of how magma oceans
formed and crystallized. The relative density of these melts with respect to solid minerals must have deter-
mined the direction and rate of melt migration during magma cooling thereby controlling Earth's thermo-
chemical evolution (e.g., Labrosse et al., 2007). Melt density, however, is a complex function of
temperature, pressure, and composition. Water, in particular, strongly influences melt properties and plays
a crucial role in the melting process. First, during crystallization (or partial melting), water is strongly parti-
tioned into the melt compared to the coexisting solid (e.g., Hauri et al., 2006). Therefore, trace amount of
water can greatly depress the melting point and trigger deep mantle melting (e.g., Hirschmann, 2006).
Second, water is likely enriched as much as ~1–10 wt % in silicate melt, greatly reducing melt density, visc-
osity, and enhancing electrical conductivity (e.g., Mookherjee et al., 2008). Lastly, such hydrous silicate melt,
once formed, likely dominates the overall water budget in the Earth's deep mantle, becoming a significant
reservoir for water. Consequently, its migration at depths can fundamentally influence Earth's
deep water cycle.

Despite much effort made in recent years in investigating the behavior and physical properties of silicate
melts at high pressure (e.g., Kono & Sanloup, 2018), the melt density is poorly constrained at deep mantle
conditions for relevant compositions. Deep mantle melts are likely to be ultramafic and enriched in water
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and iron due to their high incompatibility (e.g., Bercovici & Karato, 2003; Nomura et al., 2011). Performing
experiments to measure the density of such melts is challenging. A few extant studies using static compres-
sion are limited to upper mantle conditions (e.g., Matsukage et al., 2005). While experiments using diamond
anvil cells can reach up to Earth's core mantle boundary (CMB) pressure, only MgSiO3 glass (an analog of
MgSiO3 melt) has been measured at ambient temperature (Petitgirard et al., 2015). Dynamic (shock‐wave)
experiments can directly determine the equation of state of silicate melts at simultaneous high pressure‐high
temperature conditions, but these measurements have so far focused on water‐free systems, such as molten
MgSiO3 (Akins, 2004; Mosenfelder et al., 2009), Mg2SiO4 (Mosenfelder et al., 2007), and Fe2SiO4 (Thomas
et al., 2012).

On the other hand, first‐principles computational approach has an advantage of studying hydrous melts at
the extreme conditions of deep mantle relevance. Previous computations have examined hydrous, Fe‐free
melts, such as MgSiO3 (Mookherjee et al., 2008), SiO2 (Karki & Stixrude, 2010), and model basalt (Bajgain
et al., 2015). Recently, anhydrous Fe‐bearing melts have been simulated to constrain the effects of Fe
(Bajgain et al., 2015; Caracas et al., 2019), also considering the spin and oxidation states of iron (Karki
et al., 2018). While these computations have shown that water can significantly affect the melt density, a
direct evaluation of water effects on the density of Fe‐rich silicate melts is still lacking.

The goal of this study is to examine the effects of water on the density of Fe‐rich ultramafic melts and obtain
a universal equation of state for deep mantle melts of relevant compositions. We also discuss geophysical
implications for melting processes in Earth's deep mantle.

2. Methods

First‐principles molecular dynamics (FPMD) simulations were performed inNVT‐canonical ensemble using
the projector augmented wave potentials and generalized gradient approximation as implemented in the
VASP software (Kresse & Furthmüller, 1996). We take an eutectic‐like melt to represent a composition of
relevance to deep mantle (Mg/Si = 1, Fe# = Fe/(Fe + Mg) = 0.47 with various water contents, referred to
as E melt hereafter; e.g., Boukaré et al., 2015; Ohnishi et al., 2017). The supercells consist of
xMgSiO3•yFeO•zH2O with five different sets of x, y, z as compiled in Table S1. The volume of the supercell
was varied between 906.5 and 1,379.8 Å3 to generate a wide range of pressure (6.7 to 153.8 GPa) at 4,000 K.
The iron was set in low‐spin (nonmagnetic) state for all simulations to isolate the effects of water on melt
density. The plane wave cutoff was set at 400 eV with Gamma point Brillouin zone sampling, which resulted
in the Pulay stress of 4 to 9 GPa over the volume range considered. The simulations were run for 5 to 10 pico-
seconds with time step of 1 femtosecond. Pure water was also simulated as a function of pressure at 4,000 K
using the H48O24 supercell. Further details about the first‐principle molecular dynamics simulations of sili-
cate melts can be found elsewhere (e.g., Karki et al., 2018).

3. Results and Discussion
3.1. Speciation of Water in the Eutectic‐Like Melt

We take a eutectic‐like melt of 16MgSiO3•14FeO•20H2O (E13–16) as an example to study the evolution
of water speciation with pressure. The general trend is that hydrogen and oxygen become increasingly
polymerized with pressure, consistent with previous computational studies (Figure S1; Bajgain et al.,
2015; Karki & Stixrude, 2010). The H‐O coordination environment consists of different species, including
uncoordinated, one‐fold, two‐fold and three‐fold coordination, whose proportions change with
pressure (Figure 1a). At pressures below 50 GPa, the dominant H‐O coordination is onefold, correspond-
ing to hydroxyls (Figure 1a). Two‐fold coordination prevails at higher pressures, corresponding to poly-
hedral H bridging and extended forms (Figure 1a). It is remarkable that the mean H‐O coordination of
hydrous melt is almost identical with that of the pure water over the entire pressure range
considered (Figure 1b).

3.2. Partial Molar Volume of Water

Partial molar volume (Vm) of water in the melt can be calculated using Vm = (V − V0)/n, where V is the
volume of hydrous melt, V0 is the volume of anhydrous melt, and n is the number of water “molecules”
in the supercell. The Vm results at 4,000 K shown in Figure 2 are comparable with the previous
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calculations on hydrous basaltic melt (Bajgain et al., 2015). The partial molar volume of water thus appears
to be weakly sensitive to melt composition over a wide pressure regime. We also present the equation of state
of pure water (Vpw) from 0 to 150 GPa at 4,000 K in Figure 2 (with the fit parameters listed in Table S2) and
find that the partial molar volume of water in melt is almost equal to the pure water volume at all pressures.
This suggests ideal mixing behavior between water and the nonvolatile components in silicate melt over the
pressure regime 27 to 150 GPa investigated in this study. As previously shown for Fe‐free basaltic melt
(Bajgain et al., 2015), this ideal mixing behavior extends to much lower pressures (Figure 2). It is
interesting to explore whether this holds in the presence of Fe. Nonetheless, we focus on the implications
at CMB pressure ~135 GPa, where ideal‐mixing behavior of water is expected to occur in both Fe‐rich and
Fe‐free melts (Figure 2).

3.3. Densities of Hydrous Silicate Melt

The simulation results are given in Table S1 for E melts with different
water contents (3.98, 9.43, and 12.13 wt %) in the pressure range 27–153
GPa at 4,000 K. The pressure‐volume relationship for anhydrous E melt
(E01–06) at 4,000 K can be described with a fourth‐order Birch
Murnaghan equation of state: V0 = 2,480 ± 91 Å3, K0 = 20.29 ± 6 GPa,
K ′= 4.62 ± 0.69, and K″ = −0.19 ± 0.17 GPa−1, with uncertainties that
are 1σ errors (Table S2). As shown in Figure 3a, the density profiles of
hydrous Emelts are systematically shifted downward from the anhydrous
melt density as water lowers the melt density considerably. We can also
evaluate the density of anhydrous E melt by combining the results for
bridgmanite and ferropericlase liquids as done by Karki et al. (2018).
Thus derived density profile almost matches with the one directly
obtained in this study (Figure 3a).

As shown earlier, water is mixed ideally with nonvolatile components in
silicate melt, particularly at high pressures (>25 GPa). Therefore, the den-
sity of hydrous silicate melt (ρ) can be calculated as follows:

ρ ¼ 1−xð Þρ0 þ x ρw (1)

where ρ0 is the melt density of nonvolatile component, ρw is the density of
pure water, and x is the volume fraction of water.

From equation (1), we can also define density contrast: ρ
ρ0
−1 ¼ 1− ρw

ρ0

� �
xe

α XH2O, when ρw/ρ0 approaches to a constant at high pressure. Therefore,
the effects of water can be approximated as linearly dependent on water
content (XH2O in wt %) with coefficient α. We apply a weighted linear

Figure 1. Evolution of water speciation of eutectic‐like silicate melt (Emelt) and pure water. (a) Proportions of various H‐

O coordination species. (b) Mean H‐O coordination numbers of E melt and pure water.

Figure 2. Calculated partial molar volume (Vm) of water in eutectic‐like sili-
cate melt (Emelt) at 4,000 K at high pressure. Filled circles are our results for
E melt, compared with previous computational results (open squares) for
Fe‐free model basalt melt (Bajgain et al., 2015). Solid and dashed curves are
the equations of state for pure water at 4,000 K, with general gradient
approximation (GGA; this study) and local density approximation (LDA;
Bajgain et al., 2015), respectively.
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regression to the calculated melt densities of Emelts and obtain α =−0.97 ± 0.02 with R2 = 0.98 (Figure 3b).
We also examine the results for other hydrous silicate melts (though not included them in the regression). It
is remarkable that the hydrous effects on melt density for MgSiO3 (Mookherjee et al., 2008), model basalt
(Bajgain et al., 2015), and silica (Karki & Stixrude, 2010) follow our predicted linear trend with water
content. This is likely due to the speciation of water in silicate melt at high pressures (Figures 1 and 2).
The linear approximation, however, is less accurate at high water content, which results in more scatter
(Figure 3b).

4. Implications

The longevity of partial melt at the CMB is mostly governed by its relative density, which, in turn, is con-
trolled by melt composition, particularly, Fe and water contents (e.g., Labrosse et al., 2007; Stevenson,
2008). Here, we first briefly review current knowledge about partitioning of Fe and water between a solid
and silicate melt. Exchange reaction of Fe between a solid and silicate melt can be described as follows:

FeOmelt þMgOsolid⇋MgOmelt þ FeOsolid

with the exchange coefficient defined as KFe=
Fe #

s 1−Fe #
Lð Þ

Fe #
L 1−Fe #

sð Þ, where Fe #
L and Fe #

s represent the iron contents

(defined as molar ratio Fe/(Fe +Mg)) of silicate melt and coexisting solid, respectively. The measured values
of KFe for bridgmanite range from 0.3–0.4 at 25 GPa (Corgne et al., 2005) to ~0.1 at 80–140 GPa (Nomura
et al., 2011; Tateno et al., 2014). For ferropericlase (Mg,Fe)O, KFe is ~0.1–0.3 at 3–80 GPa (Deng & Lee,
2017; Du & Lee, 2014) to ~0.1 up to 120 GPa (Fu et al., 2018). KFe might also depend on the temperature, bulk
composition, and water content, and future studies should explore those effects. Here we take 0.1–0.2 as rele-
vant KFe range for the CMB.

No data on partitioning of water (DH2O) between silicate melt and lower mantle minerals are currently
available. Here we estimate DH2O using the relation: DH2O = Cmineral/Cmelt, where Cmelt and Cmineral are
the water solubilities in silicate melt and mineral, respectively. The solubility of water in mantle melts is
expected to be high (>50 wt %) at pressures greater than 4 GPa, beyond which miscibility gap between
hydrous fluid and silicate melt closes and it becomes a supercritical fluid (e.g., Mibe et al., 2007).
However, the data on the water solubility in lower mantle minerals are highly scattered. The measured
water solubility of bridgmanite is as low as ~1–2 ppm (Bolfan‐Casanova et al., 2000) but also takes
higher values of ~200 ppm (Meade et al., 1994) and up to 2,000 ppm in Al‐ and Fe‐bearing bridgmanite
(Inoue et al., 2010; Litasov et al., 2003; Murakami et al., 2002). Computational studies have predicted the

a b

Figure 3. (a) Density‐pressure profiles of anhydrous and hydrous eutectic‐like silicate melt (E melt) at 4,000 K. The cal-
culated results are shown by black circles (no water), and by red, green, and blue circles, respectively, for 3.98, 9.43,
and 12.13 wt % water content. The solid curves represent the density profiles from the EoS fit and the ideal water‐melt
solution model (equation (1)). The dashed curve is the density derived from Karki et al. (2018). (b) Density contrast
between hydrous and anhydrous Emelts as a function of the water content at 4,000 K. The present results for Emelt (solid
circles) show a linear trend (solid line). Also shown are the previous results for molten silica (Karki & Stixrude, 2010),
enstatite (Mookherjee et al., 2008), and model basalt (Bajgain et al., 2015).
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water solubility in bridgmanite in the range ~33 ppm (Panero et al.,
2015) to 1,000 ppm (Hernández et al., 2013). In addition, the water
solubility of another major lower mantle mineral MgO tends to be
rather low too, ~20 ppm at 25 GPa and 1,200 °C (N. Bolfan‐Casanova
et al., 2002). In this study, we take 1–1,000 ppm as a possible range
for the solubility of water in bridgmanite, which corresponds to DH2O

~2 × 10−6–2 × 10−3.

Given that both KFe and DH2O values are much smaller than 1, melt
should be much more enriched in both Fe and water than the solid
at equilibrium. To demonstrate the importance of compositional effects,
we use equation (1) to compute the melt density as a function of water
content and Fe content (Fe#) at the CMB condition, namely, 135 GPa
and 4,000 K. We also use the density model from Karki et al. (2018)
to calculate ρ0 for different Fe contents with the low‐ to high‐spin Fe
ratio set at 80:20. Figure 4 shows a contour of density difference equal
to zero between a silicate melt and solid (i.e., neutral density buoy-
ancy) at the CMB condition. For simplicity, (Mg + Fe)/Si of the melt
is taken as 2 (Boukaré et al., 2015; Ohnishi et al., 2017) as densities
of MgO and MgSiO3 melt are similar at high pressure (Karki et al.,
2018). The solid density of Earth's lowermost mantle is taken as
5.566 g/cm3 (Dziewonski & Anderson, 1981). Both water content and
Fe# have strong effects on the melt density, thereby splitting the com-
position space into two areas, each on either side of the black line
(Figure 4) indicated by “Float” and “Sink” arrows. The melt will float,
for example, when the density difference is negative for low iron‐high
water content, and the melt will sink, for example, when the density
difference is positive for high iron‐low water contents.

To determine the fate of the melt, we need to find the exact water and iron
contents in the partial melt. However, this is uncertain due to a few but poorly constrained parameters, such
as the melt fraction (φ), exchange coefficient of iron (KFe), and partition coefficient of water (DH2O) between
melt and coexisting solids, as well as bulk iron and water contents (XFe and XH2O).

Following Karki et al. (2018), we consider a scenario for crystallization of a fully molten Earth, assuming
equilibrium crystallization (Solomatov & Stevenson, 1993b). We further assume initial uniform iron and
water contents in the magma ocean as XFe = 0.1 and XH2O = 200 ppm, respectively. We estimate water con-

tent of the silicate melt using Xmelt;H2O ¼ XH2O

1−φð ÞDH2Oþφ. In our case, DH2O ~2 × 10−6–2 × 10−3, which implies

1−φð ÞDH2O≪φ. Therefore, Xmelt;H2OeXH2O=φ, which means that water content in silicate melt is a strong
function of initial water content and melt fraction.

We calculate the density differences between the melt and solid mantle for different amounts of partial melts
by varying φ from 20% to 1%. The calculated Fe# in the melt ranges ~0.25–0.50 and water content ranges
~500 ppm–2 wt %. In this case (KFe = 0.1), equilibrium compositional evolution (blue curve) falls in the
region where melt is denser than coexisting solid. Therefore, residual melt may migrate downward and stay
negatively buoyant above the CMB. For KFe = 0.2, at early stage of crystallization when φ > 15%, the melt is
more buoyant than coexisting solid; therefore, crystallization should start from bottom‐up and melt would
migrate upward. Toward later stage when φ < 15%, the residual melt is denser than coexisting solid and
would migrate downward. We find that the upper and lower bounds of DH2O yield very similar evolution
curves; therefore, only one curve is shown in Figure 4. In both cases, almost all water would go to the silicate
melt and the calculated water contents are similar at given melt fraction φ (note that two evolution curves
run almost parallel in the vertical direction).

We note that water contents are below 0.2 wt % in the melt during early stage of crystallization of magma
ocean when melt fraction φ > 10% (Figure 4). So the density crossover is essentially dominated by Fe
enrichment in the melt. These evolution scenarios are similar to the previous studies for a water‐free

Figure 4. Density difference between silicate melt and solid mantle at the
CMB condition (4,000 K and 135 GPa) in composition space defined by
water and iron contents. Contour of zero density difference (neutral buoy-
ancy) considering melt with (Mg + Fe)/Si = 2 is drawn as a black line. The
thick arrows labeled as “Float” and “Sink” indicate the areas where density
differences are negative and positive, respectively. Melt with bulk silicate
Earth (BSE melt) composition (Mg/Si = 1.25, Fe# = 0.1, with no water) is
shown as an orange circle. Density of the melt is calculated assuming equi-
librium crystallization as melt fraction φ ranges from 20 to 1% at the step of
1% for KFe = 0.2 and 0.1. KFe represents the exchange coefficient of Fe in
exchange reaction between a solid and silicate melt.
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magma ocean (e.g., Caracas et al., 2019; Karki et al., 2018; Miyazaki & Korenaga, 2019) when φ > 10%.
During such early stages of crystallization, the details of how crystal settled are still debated and model
dependent (e.g., Abe, 1997; Solomatov & Stevenson, 1993a). Nonetheless, it is conceivable to form a
BMO either by matrix compaction and/or by late overturn (Elkins‐Tanton et al., 2003; Miyazaki &
Korenaga, 2019). In this study, we focus on the evolution of a basal magma ocean near the CMB at late
stage of crystallization (φ < 10%), when water gets increasingly enriched in the residual melt. As shown in
Figure 4, when φ < 10%, the residual melt can contain a few weight percent water and be gravitationally
stable near the CMB.

We assume a constant temperature of 4,000 K at the CMB. This is not likely the case, considering that the
Earth is cooling down (e.g., Korenaga, 2008). In our case, high water content in the melt likely decreases
the crystallization temperature (Nomura et al., 2014) and a lower CMB temperature might be expected.
The density differences between melt and coexisting solid are expected to be more or less insensitive to tem-
perature directly at high pressures because the thermal expansivity is small for both the solid and liquid
phases (1–2 × 10−5 K−1; Karki et al., 2018). Moreover, temperature might influence Fe or water partitioning
between solid and liquid, affecting the density difference between the two. Therefore, temperature effects
should be taken into account in future studies, especially its effect on Fe/water partitioning between solid
and liquid.

In addition, we test the sensitivity of our model parameters, with a range of XFe and XH2O. We find that cor-
responding evolution curves are similar (Figures S2 and S3). Fractional crystallization may also be consid-
ered as crystal accumulation and matrix compaction are likely important (Miyazaki & Korenaga, 2019). If
so, it should result in higher Fe content in the melt at a given melt fraction, further stabilizing silicate melt
at CMB.

The hydrous, iron‐rich melt is also expected to be low in seismic velocities (e.g., Williams & Garnero, 1996).
This is corroborated with seismological observations suggesting the existence of ultralow‐velocity zones near
the CMB (e.g., Williams &Garnero, 1996; Yuan & Romanowicz, 2017). Other geophysical observations, such
as normal modes and tidal tomography, also indicate a dense layer in the lowermost mantle (e.g., Ishii &
Tromp, 1999; Lau et al., 2017; Trampert et al., 2004), consistent with such a dense, hydrous iron‐rich
melt layer.

Similar to water, heat‐producing elements (e.g., potassium, uranium and thorium) are regarded as highly
incompatible, although their partitioning behavior at CMB conditions is yet to be determined (e.g.,
Corgne et al., 2005; Hirose et al., 2004). If they remain incompatible at CMB condition, hydrous melts can
also be a significant heat source throughout Earth's history (Labrosse et al., 2007). This can have profound
implications for Earth's heat budget and its thermal history (e.g., Driscoll & Bercovici, 2014; Korenaga,
2008). Moreover, noble gases (e.g., helium) are also considered to have strong affinity for silicate melts; thus,
a primordial layer with high 3He/4He ratios may have formed early and remained near the CMB and isolated
from the overlying convecting mantle (e.g., Kurz et al., 1982).

5. Conclusions and Future Studies

We perform first‐principles molecular dynamics simulations of hydrous iron‐rich silicate melts at 4,000 K in
the pressure range between 27–153 GPa. Various water contents are chosen to systematically determine the
effects of water on the density of silicate melt. We find that water decreases melt density significantly and
mixes nearly ideally with nonvolatile components in silicate melts over the pressure range studied. By eval-
uating melt‐solid density differences over a wide composition space defined by iron and water contents, we
infer that hydrous partial melts can be denser than coexisting solids at the later stages of magma ocean crys-
tallization when melt fractions are less than ~15%. Therefore, hydrous melt can be gravitationally stable
under CMB conditions for geological time scales. This might provide a mechanism to explain seismically
slow and dense layers near the CMB. Our study also highlights the importance of precisely determining
solid‐liquid partitioning coefficients of iron and water at deep mantle conditions. Improved data will help
constrain the Fe# and water content in partial melts, thus providing a better understanding of the stability
of partial melts at the CMB. Effects of other volatiles, such as carbon, should be also included in the future
to evaluate the stability of partial melt at the CMB (e.g., Ghosh et al., 2017; Solomatova et al., 2019).
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Understanding the fate of these volatile‐rich melts will be the key to unfolding Earth's early history and
thermochemical evolution.
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