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When a material is heated, generally, it dilates. Here, we find a
general trend that the average distance between a center atom
and atoms in the first nearest-neighbor shell contracts for several
metallic melts upon heating. Using synchrotron X-ray diffraction
technique and molecular dynamics simulations, we elucidate that
this anomaly is caused by the redistribution of polyhedral clusters
affected by temperature. In metallic melts, the high-coordinated
polyhedra are inclined to evolve into low-coordinated ones with
increasing temperature. As the coordination number decreases,
the average atomic distance between a center atom and atoms
in the first shell of polyhedral clusters is reduced. This phenome-
non is a ubiquitous feature for metallic melts consisting of various-
sized polyhedra. This finding sheds light on the understanding of
atomic structures and thermal behavior of disordered materials
and will trigger more experimental and theoretical studies of
liquids, amorphous alloys, glasses, and casting temperature effect
on solidification process of crystalline materials.
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The study of metallic liquid structure is of importance because
it is a fundamental issue in materials science and condensed-

matter physics due to its critical role in understanding the pro-
cesses of melting, solidification, and glass transition (1–6).
Progress has been achieved in recent years both experimentally
(7–24) and theoretically (13, 25–33). It is widely accepted that
metallic liquids are composed of atomic clusters (7–33). How-
ever, how these clusters evolve upon external effects (e.g., tem-
perature and pressure) still remains unclear (7–37). Generally,
materials undergo thermal expansion and average atomic dis-
tance in the first shell increase upon heating. Here, we report
a contraction of average atomic distance between a center atom
and atoms in the first shell for metallic Al, Zn, Sn, In, Cu, Ni,
Ag, and Au melts during heating. The thermal behaviors of
metallic melts (pure elements and alloys) have been intensely
studied, whereas the anomalous behavior of average atomic dis-
tance between a center atom and atoms in the first shell in liquids
was usually ignored or not systematically evaluated (7–9, 21, 24).
The anomalous behavior is focused upon and systematically inves-
tigated here by applying the state-of-the-art advanced synchrotron
radiation-based experimental techniques and theoretical methods.

Results and Discussion
Fig. 1 shows the pair correlation function g(r) at different tem-
peratures for Al and Zn obtained by in situ high-temperature
X-ray diffraction (XRD). Similar results for Sn and In metallic
melts were also obtained in Fig. S1. The g(r) was obtained by
Fourier transformation of the structure factor S(q) data, which
reveals the average probabilities for finding atoms at a distance
r for a given atom. In crystalline phases, atoms are located in
discrete shells. However, in disordered structures they usually
exhibit a broad distribution. The peak shape at various r values in
g(r) do not change obviously in the studied temperature range.

Fig. 1 A and B (Inset) is the local magnification of the first peak
in g(r). The reason to select the peak position is that at this
distance the probability is the highest, which could be treated as
an indicator for the change of atomic bonds. Upon heating, the
peak positions in g(r) shift. One striking observation is that the
first peak positions in g(r) move to low r rather than to large r values
with increasing temperature for these single elements, e.g., 2.758
(1) Å at 937 K and 2.750(1) Å at 1077 K for Al, 2.645(1) Å at 710
K and 2.639(1) Å at 830 K for Zn, 3.104(1) Å at 543 K and 3.073
(1) Å at 1043 K for Sn, and 3.136(1) Å at 440 K and 3.098(1) Å
at 890 K for In. Using the equation Δl = (rT − r0)/r0, where r0 and
rT denote the first peak position in g(r) at the lowest studied
temperature and at a given temperature T, the average bond
length in the first shell decreased with a shrinkage rate of 1.87 ×
10−5 K−1 for Al, 1.92 × 10−5 K−1 for Zn, 2.09 × 10−5 K−1 for Sn,
and 2.78 × 10−5 K−1 for In in Fig. 1C. In addition, the real av-
erage distances that correspond to the “center of mass” of the
first maximum in g(r) as a function of temperature were calcu-
lated. The same decreasing trend is also revealed as in Fig. 1C.
Peak positions from both pair distribution function (PDF) and
radial distribution function [RDF= 4πr2g(r)] for studied samples
were also calculated (Fig. S2). They further confirm that the first
peak position increases when temperature decreases, although
the exact values deduced from PDF and RDF differ. The co-
ordination number (CN) in the first shell is obtained by in-
tegrating the area of the first peak up to the first minimum. Using
the equation ΔCN = (CNT − CN0)/CN0, a declining trend with
the increasing temperature is clearly shown in Fig. 2, e.g., for
Al 13.26(1) at 937 K and 13.12(1) at 1077 K, for Zn 13.01(1) at
710 K and 12.87(1) at 830 K, for Sn 10.33(1) at 543 K and 9.96(1)
at 1043 K, and for In 11.13(1) at 440 K and 10.65(1) at 890 K. In
general, it is difficult to define the nearest neighbors in liquids
and determine a reliable CN. Different values in CN often occur
when using different ways to estimate CN or using different
cutoff distances. However, in the present work, the temperature
dependences of CN are found to be the same when using dif-
ferent cutoff distances or using different ways (Fig. S3). To
further confirm the contraction behavior of the average atomic
bond length in the first shell for melts upon heating, we also
carried out extended X-ray absorption fine-structure (EXAFS)
measurements at the Zn K edge at three different temperatures
for liquid Zn in Fig. 3. A single-distance shell model was used to
simulate the EXAFS results. A good agreement between the
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simulated result and the experimental one is shown in Fig. 3A,
Inset. It is found that the average bond length in the first shell
indeed decreases with increasing temperature in Fig. 3B. Results
obtained both from in situ XRD and in situ EXAFS measure-
ments reveal that the average bond length between center atom
and atoms in the first shell does contract with increasing tem-
perature in studied metallic melts.
Molecular dynamics (MD) simulation plays an important role

in understanding the atomic structure and the related properties
of complex systems. To uncover the mechanism for the finding
mentioned above, MD simulations were performed for the se-
lected single elements of Al, Cu, Ag, Au, and Ni, by which good
reliable atomic potentials are available (38–40). Agreements in
g(r) and S(q) between the MD simulated data and experimental
ones (Fig. S4) were achieved for Al. Fig. 4A shows the g(r) of pure
Al changing with temperature from 400 to 2000 K produced by

MD. The melting point is at the temperature between about 900
and 1000 K, which is close to the experimental value of 933.5 K. It
is demonstrated that the peak intensity is significantly reduced
and the first peak position in g(r) indeed shifts to low r values
after melting upon heating, which is consistent with the experi-
mental observations in Fig. 1. Using the Voronoi tessellation

Fig. 1. First peak position of g(r) curves shift upon heating for liquid melts.
(A) g(r) curves for Al with temperature increasing from 937 to 1077 K with
20-K increment. (B) g(r) curves for Zn with temperature increasing from 710
to 830 K with 20-K increment. (A and B, Insets) Local magnification of the
top part for the first peak of g(r), showing the reduced peak intensity and
peak positions shift to low r values with increasing temperature. (C) Varia-
tion of the first peak position in g(r) changing with temperature for metallic
Al, Zn, Sn, and In melts. The lines are the linear fit of the peak position.

Fig. 2. Variation of CN for the first shell changing with temperature for
metallic Al, Zn, Sn, and In melts. The lines are the linear fit of CN.

Fig. 3. Structural changes in liquid Zn with increasing temperature by
EXAFS experiments. (A) Backward Fourier transform results obtained from in
situ EXAFS experiments of liquid Zn at three different temperatures: 693,
713, and 743 K. (Inset) Comparison of the simulated results and the ex-
perimental one at 693 K. (B) Declining trend for the bond length estimated
from the single-distance shell model simulation at three temperatures. The
line is the linear fit of the three points.
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method (41) with a cutoff of 3.7 Å, the evolution of polyhedra
within the nearest neighbor was studied for Al melts. The frac-
tion of ideal icosahedra of <0,0,12,0> is quite low (about 1%),
and Fig. 4B displays that most icosahedron-like polyhedra are
<0,2,8,0>, <0,2,8,1>, and <0,2,8,2>. With increasing tem-
perature, the tendency of atomic configuration evolution is
that the fractions of high-coordinated polyhedra like 11- and
12-coordinated are decreased. Accordingly, low-coordinated
polyhedra (9- and 10-coordinated) are distinctly increased.
This implies that high-coordinated polyhedra are relatively
stable at low temperatures, and vice versa. Fig. 4C shows that
the average bond lengths between center atom and atoms in
the first shell change with the CN, indicating that high-co-
ordinated polyhedra have larger average distances between
center atom and atoms in the shell than those of low-co-
ordinated ones. Bond lengths in polyhedra having the same
CN value increase at high temperatures. Usually, the larger
the distance between atoms, the weaker the bonding will be.
High temperature makes atoms vibrate drastically, which could
drive some of them to break away from high-coordinated poly-
hedra where the weaker atomic bonds are located. Conse-
quently, it is an intrinsic nature that the polyhedra in metallic
melts become low-coordinated clusters with short bond lengths
at higher temperatures. Fig. 4D schematically shows that the
major polyhedra change from CN = 12 to CN = 10 with tem-
perature increase. Indeed, the similar variation tendency was ob-
served for single elements of Cu, Au, Ag, and Ni (details shown in
Figs. S5–S8). Fig. 5A clearly reveals negative variations of average
bond length between center atom and atoms in the first shell as
a function of temperature for Al, Cu, Ag, Au, and Ni liquids with
increasing temperature from MD simulations. The similar
trend in the coordinate number reduction is displayed in Fig.
5B, in good agreement with the above experimental results for

Al, Zn, Sn, and In. All results obtained for liquid zinc from ab
initio MD simulation and reverse Monte Carlo simulation in
Figs. S9 and S10 are also consistent with the results men-
tioned above.
The finding mentioned above could be a ubiquitous phe-

nomenon for metallic melts upon heating. The origination of this
phenomenon comes from the structural change in the first shell,
that is, the number of high-coordinated polyhedra, in which
atoms have large average atomic distance between a center atom
and atoms in the shell, is reduced when temperature increases,
forming more close-packed small clusters. Consequently, the
average atomic distance and CN in the first shell decreases with
increasing temperature. However, on the macroscopic scale, the
bulk volume of liquids is expanded as shown in Fig. S11. The
average bond lengths for the high-order shells (>2) in g(r) indeed
gradually increase with temperature in most studied liquids in
Figs. S12 and S13. Hence, most likely, more excess open volumes
(or free volumes) are created between polyhedra, thereby re-
ducing the liquid density upon heating (42, 43). In addition, al-
though the shift of the first peak to lower r values in g(r) was
reported for multicomponent alloys (21, 44, 45) and some
speculations were stated in the previous published papers (7–9,
24), it is still impossible to deduce the atomic bond change due to
the overlapping effect of many atomic bonds in multicomponent
alloy systems, e.g., 3 atomic bonds (A–A, A–B, and B–B pairs)
for a binary alloy A–B system and 10 atomic bonds (A–A, A–B,
A–C, A–D, B–B, B–C, B–D, C–C, C–D, and D–D pairs) for a
quarternary alloy A–B–C–D system. Only using simple pure metal
elements, the atomic distance in the first shell can be unam-
biguously determined from the first peak shift in pair correlation
function. Moreover, a liquid can be transformed into a glass upon
cooling if the crystallization is bypassed. Our results that at
high temperatures the melts contain many low-coordinated

Fig. 4. Structural changes in liquid Al with increasing temperature reproduced by MD simulation. (A) g(r) curves for Al heated from 400 to 2,000 K indicate
the melting point at a temperature between 900 and 1,000 K. (B) Fractions of polyhedra at different temperatures; those higher than 3% are shown. Upon
heating, the number of high-coordinated polyhedra is reduced with the low-coordinated uprising. (C) Relationship between the average bond length be-
tween center atom and atoms in the first shell and CN value, showing the bond length of high-coordinated polyhedra is larger than that of low-coordinated
ones, whereas in the polyhedra with the same CN values the bond length still expands with increasing temperature. (D) Schematically shows the evolution
from high-coordinated to low-coordinated polyhedra with temperature increase. The increased weight factor of low-coordinated polyhedra leads to the
reduced bond length between center atom and atoms in the first shell.
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polyhedral, whereas at low temperatures they have high-co-
ordinated polyhedra of icosahedron-like clusters, can explain
that reported experimental results, e.g., different temperatures
of melts, at which melts are quenched, could affect the glass-
forming process, thermal stability, and mechanical properties of
systems (46–52). Furthermore, our finding might also shed light
on the casting temperature effect on solidification process in
crystalline systems, and the glass transition phenomenon in dis-
ordered systems because they are atomic packing related as well.

Conclusions
In summary, the atomic structure changes of liquid Al, Zn, Sn
and In upon heating have been measured by in situ synchrotron
X-ray diffraction and/or EXAFS, and those of liquid Al, Cu, Ag,
Au, and Ni reproduced by classic MD simulations and Zn by ab
initio MD simulations. We proposed a scenario describing me-
tallic clusters evolution in the liquid state, i.e., high-coordinated
clusters with larger bond length between a center atom and
atoms in the shell declined into low-coordinated clusters with
smaller bond length upon heating. We observed the contraction

of average atomic distance between a center atom and atoms in
the first shell and the reduction in CN in the first shell for eight
metallic melts upon heating. Such structural evolution can fur-
ther promote the understanding of thermal behavior of disor-
dered materials including melting, solidification, glass transition,
and phase transition in liquid phases.

Methods
The high-energy XRD measurements were carried out on the BW5 station by
using synchrotron radiation with a wavelength of 0.124 Å at HASYLAB/DESY,
Hamburg. Pure Al, Zn, Sn, and In wire were cut into fine pieces and then
transferred into a capillary 2 mm in diameter. After pumping, a vacuum
environment in the capillary was created. The heater is composed of twin
face-to-face tungsten bulbs. The furnace temperature was calibrated and
controlled by two thermocouples, one inside the capillary reaching a place
just above the sample, and another in the chamber. The X-ray beam size and
wavelength used were 0.5 × 0.5 mm2 and 0.124 Å, respectively. Upon
heating, the diffraction patterns were in situ automatically collected from
323 K by a flat-panel Si detector (Perkin-Elmer 1621) with 200 × 200 μm2

pixel size and 2048 × 2048 pixels. Exposure time was 2 s, and five diffraction
patterns were summed for each data set. Scattering intensity I(q) (vs. scat-
tering vector) were extracted by using the software package FIT2D (53).
From I(q), structure factor S(q) and PDF G(r) could be obtained by using the
program PDFgetX2 (54). Then, the pair correlation function g(r) is calculated
by g(r) = 1 + G(r)/4πrρ0, where ρ0 is the atomic number density. For Zn melts,
high-temperature EXAFS measurements (55) at the Zn K edge on the
beamline 1W1B-XAFS of the Beijing Synchrotron Radiation Facility were also
carried out because this technique can give the average atomic bond length
in the first shell, whereas a detailed description can be found in SI Methods.

Molecular dynamics (MD) simulations were performed for the selected
single elements of Al, Cu, Ag, Au, and Ni. Adopting well-developed em-
bedded atom method potentials for such elements (38–40), we simulated
the whole thermal process by using the LAMMPS code (56). A cubic box
containing 20,000 atoms with 3D periodic boundary conditions was
heated to about 800 K above their melting points under zero external
pressure (constant number of particles, constant pressure, and constant
temperature ensembles and Nosé–Hoover thermostat) (57) at a heating rate
of 1 × 1012 K/s. Lacking a good atomic potential for Zn, ab initio MD simu-
lations for 128 Zn atoms were also carried out by using the density func-
tional theory implemented in the Vienna ab initio simulation package
(VASP) code (58). Detailed description of the ab initio MD simulation and
reverse Monte Carlo simulation for pure Zn is given in SI Methods.
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